| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|
| 2 |
|
oveq2 |
|
| 3 |
1 2
|
sseq12d |
|
| 4 |
|
id |
|
| 5 |
|
oveq2 |
|
| 6 |
4 5
|
sseq12d |
|
| 7 |
|
id |
|
| 8 |
|
oveq2 |
|
| 9 |
7 8
|
sseq12d |
|
| 10 |
|
id |
|
| 11 |
|
oveq2 |
|
| 12 |
10 11
|
sseq12d |
|
| 13 |
|
0ss |
|
| 14 |
13
|
a1i |
|
| 15 |
|
eloni |
|
| 16 |
|
eldifi |
|
| 17 |
|
oecl |
|
| 18 |
16 17
|
sylan |
|
| 19 |
|
eloni |
|
| 20 |
18 19
|
syl |
|
| 21 |
|
ordsucsssuc |
|
| 22 |
15 20 21
|
syl2an2 |
|
| 23 |
|
onsuc |
|
| 24 |
|
oecl |
|
| 25 |
16 23 24
|
syl2an |
|
| 26 |
|
eloni |
|
| 27 |
25 26
|
syl |
|
| 28 |
|
id |
|
| 29 |
|
vex |
|
| 30 |
29
|
sucid |
|
| 31 |
|
oeordi |
|
| 32 |
30 31
|
mpi |
|
| 33 |
23 28 32
|
syl2anr |
|
| 34 |
|
ordsucss |
|
| 35 |
27 33 34
|
sylc |
|
| 36 |
|
sstr2 |
|
| 37 |
35 36
|
syl5com |
|
| 38 |
22 37
|
sylbid |
|
| 39 |
38
|
expcom |
|
| 40 |
|
dif20el |
|
| 41 |
16 40
|
jca |
|
| 42 |
|
ss2iun |
|
| 43 |
|
limuni |
|
| 44 |
|
uniiun |
|
| 45 |
43 44
|
eqtrdi |
|
| 46 |
45
|
adantr |
|
| 47 |
|
vex |
|
| 48 |
|
oelim |
|
| 49 |
47 48
|
mpanlr1 |
|
| 50 |
49
|
anasss |
|
| 51 |
50
|
an12s |
|
| 52 |
46 51
|
sseq12d |
|
| 53 |
42 52
|
imbitrrid |
|
| 54 |
53
|
ex |
|
| 55 |
41 54
|
syl5 |
|
| 56 |
3 6 9 12 14 39 55
|
tfinds3 |
|
| 57 |
56
|
impcom |
|