Metamath Proof Explorer


Theorem ofoprabco

Description: Function operation as a composition with an operation. (Contributed by Thierry Arnoux, 4-Jun-2017)

Ref Expression
Hypotheses ofoprabco.1 _aM
ofoprabco.2 φF:AB
ofoprabco.3 φG:AC
ofoprabco.4 φAV
ofoprabco.5 φM=aAFaGa
ofoprabco.6 φN=xB,yCxRy
Assertion ofoprabco φFRfG=NM

Proof

Step Hyp Ref Expression
1 ofoprabco.1 _aM
2 ofoprabco.2 φF:AB
3 ofoprabco.3 φG:AC
4 ofoprabco.4 φAV
5 ofoprabco.5 φM=aAFaGa
6 ofoprabco.6 φN=xB,yCxRy
7 2 ffvelcdmda φaAFaB
8 3 ffvelcdmda φaAGaC
9 opelxpi FaBGaCFaGaB×C
10 7 8 9 syl2anc φaAFaGaB×C
11 5 10 fvmpt2d φaAMa=FaGa
12 11 fveq2d φaANMa=NFaGa
13 df-ov FaNGa=NFaGa
14 13 a1i φaAFaNGa=NFaGa
15 6 adantr φaAN=xB,yCxRy
16 simprl φaAx=Fay=Gax=Fa
17 simprr φaAx=Fay=Gay=Ga
18 16 17 oveq12d φaAx=Fay=GaxRy=FaRGa
19 ovexd φaAFaRGaV
20 15 18 7 8 19 ovmpod φaAFaNGa=FaRGa
21 12 14 20 3eqtr2d φaANMa=FaRGa
22 21 mpteq2dva φaANMa=aAFaRGa
23 ovex xRyV
24 23 rgen2w xByCxRyV
25 eqid xB,yCxRy=xB,yCxRy
26 25 fmpo xByCxRyVxB,yCxRy:B×CV
27 24 26 mpbi xB,yCxRy:B×CV
28 6 feq1d φN:B×CVxB,yCxRy:B×CV
29 27 28 mpbiri φN:B×CV
30 5 10 fmpt3d φM:AB×C
31 1 fcomptf N:B×CVM:AB×CNM=aANMa
32 29 30 31 syl2anc φNM=aANMa
33 2 feqmptd φF=aAFa
34 3 feqmptd φG=aAGa
35 4 7 8 33 34 offval2 φFRfG=aAFaRGa
36 22 32 35 3eqtr4rd φFRfG=NM