Description: Function analogue of subeq0 . (Contributed by Mario Carneiro, 24-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | ofsubeq0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 | |
|
2 | 1 | ffnd | |
3 | simp3 | |
|
4 | 3 | ffnd | |
5 | simp1 | |
|
6 | inidm | |
|
7 | eqidd | |
|
8 | eqidd | |
|
9 | 2 4 5 5 6 7 8 | ofval | |
10 | c0ex | |
|
11 | 10 | fvconst2 | |
12 | 11 | adantl | |
13 | 9 12 | eqeq12d | |
14 | 1 | ffvelcdmda | |
15 | 3 | ffvelcdmda | |
16 | 14 15 | subeq0ad | |
17 | 13 16 | bitrd | |
18 | 17 | ralbidva | |
19 | 2 4 5 5 6 | offn | |
20 | 10 | fconst | |
21 | ffn | |
|
22 | 20 21 | ax-mp | |
23 | eqfnfv | |
|
24 | 19 22 23 | sylancl | |
25 | eqfnfv | |
|
26 | 2 4 25 | syl2anc | |
27 | 18 24 26 | 3bitr4d | |