Metamath Proof Explorer


Theorem ofun

Description: A function operation of unions of disjoint functions is a union of function operations. (Contributed by SN, 16-Jun-2024)

Ref Expression
Hypotheses ofun.a φAFnM
ofun.b φBFnM
ofun.c φCFnN
ofun.d φDFnN
ofun.m φMV
ofun.n φNW
ofun.1 φMN=
Assertion ofun φACRfBD=ARfBCRfD

Proof

Step Hyp Ref Expression
1 ofun.a φAFnM
2 ofun.b φBFnM
3 ofun.c φCFnN
4 ofun.d φDFnN
5 ofun.m φMV
6 ofun.n φNW
7 ofun.1 φMN=
8 1 3 7 fnund φACFnMN
9 2 4 7 fnund φBDFnMN
10 5 6 unexd φMNV
11 inidm MNMN=MN
12 8 9 10 10 11 offn φACRfBDFnMN
13 inidm MM=M
14 1 2 5 5 13 offn φARfBFnM
15 inidm NN=N
16 3 4 6 6 15 offn φCRfDFnN
17 14 16 7 fnund φARfBCRfDFnMN
18 eqidd φxMNACx=ACx
19 eqidd φxMNBDx=BDx
20 8 9 10 10 11 18 19 ofval φxMNACRfBDx=ACxRBDx
21 elun xMNxMxN
22 eqidd φxMAx=Ax
23 eqidd φxMBx=Bx
24 1 2 5 5 13 22 23 ofval φxMARfBx=AxRBx
25 14 adantr φxMARfBFnM
26 16 adantr φxMCRfDFnN
27 7 adantr φxMMN=
28 simpr φxMxM
29 25 26 27 28 fvun1d φxMARfBCRfDx=ARfBx
30 1 adantr φxMAFnM
31 3 adantr φxMCFnN
32 30 31 27 28 fvun1d φxMACx=Ax
33 2 adantr φxMBFnM
34 4 adantr φxMDFnN
35 33 34 27 28 fvun1d φxMBDx=Bx
36 32 35 oveq12d φxMACxRBDx=AxRBx
37 24 29 36 3eqtr4rd φxMACxRBDx=ARfBCRfDx
38 eqidd φxNCx=Cx
39 eqidd φxNDx=Dx
40 3 4 6 6 15 38 39 ofval φxNCRfDx=CxRDx
41 14 adantr φxNARfBFnM
42 16 adantr φxNCRfDFnN
43 7 adantr φxNMN=
44 simpr φxNxN
45 41 42 43 44 fvun2d φxNARfBCRfDx=CRfDx
46 1 adantr φxNAFnM
47 3 adantr φxNCFnN
48 46 47 43 44 fvun2d φxNACx=Cx
49 2 adantr φxNBFnM
50 4 adantr φxNDFnN
51 49 50 43 44 fvun2d φxNBDx=Dx
52 48 51 oveq12d φxNACxRBDx=CxRDx
53 40 45 52 3eqtr4rd φxNACxRBDx=ARfBCRfDx
54 37 53 jaodan φxMxNACxRBDx=ARfBCRfDx
55 21 54 sylan2b φxMNACxRBDx=ARfBCRfDx
56 20 55 eqtrd φxMNACRfBDx=ARfBCRfDx
57 12 17 56 eqfnfvd φACRfBD=ARfBCRfD