Description: A function operation of unions of disjoint functions is a union of function operations. (Contributed by SN, 16-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ofun.a | |
|
ofun.b | |
||
ofun.c | |
||
ofun.d | |
||
ofun.m | |
||
ofun.n | |
||
ofun.1 | |
||
Assertion | ofun | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofun.a | |
|
2 | ofun.b | |
|
3 | ofun.c | |
|
4 | ofun.d | |
|
5 | ofun.m | |
|
6 | ofun.n | |
|
7 | ofun.1 | |
|
8 | 1 3 7 | fnund | |
9 | 2 4 7 | fnund | |
10 | 5 6 | unexd | |
11 | inidm | |
|
12 | 8 9 10 10 11 | offn | |
13 | inidm | |
|
14 | 1 2 5 5 13 | offn | |
15 | inidm | |
|
16 | 3 4 6 6 15 | offn | |
17 | 14 16 7 | fnund | |
18 | eqidd | |
|
19 | eqidd | |
|
20 | 8 9 10 10 11 18 19 | ofval | |
21 | elun | |
|
22 | eqidd | |
|
23 | eqidd | |
|
24 | 1 2 5 5 13 22 23 | ofval | |
25 | 14 | adantr | |
26 | 16 | adantr | |
27 | 7 | adantr | |
28 | simpr | |
|
29 | 25 26 27 28 | fvun1d | |
30 | 1 | adantr | |
31 | 3 | adantr | |
32 | 30 31 27 28 | fvun1d | |
33 | 2 | adantr | |
34 | 4 | adantr | |
35 | 33 34 27 28 | fvun1d | |
36 | 32 35 | oveq12d | |
37 | 24 29 36 | 3eqtr4rd | |
38 | eqidd | |
|
39 | eqidd | |
|
40 | 3 4 6 6 15 38 39 | ofval | |
41 | 14 | adantr | |
42 | 16 | adantr | |
43 | 7 | adantr | |
44 | simpr | |
|
45 | 41 42 43 44 | fvun2d | |
46 | 1 | adantr | |
47 | 3 | adantr | |
48 | 46 47 43 44 | fvun2d | |
49 | 2 | adantr | |
50 | 4 | adantr | |
51 | 49 50 43 44 | fvun2d | |
52 | 48 51 | oveq12d | |
53 | 40 45 52 | 3eqtr4rd | |
54 | 37 53 | jaodan | |
55 | 21 54 | sylan2b | |
56 | 20 55 | eqtrd | |
57 | 12 17 56 | eqfnfvd | |