Metamath Proof Explorer


Theorem omeiunlempt

Description: The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses omeiunlempt.nph nφ
omeiunlempt.o φOOutMeas
omeiunlempt.x X=domO
omeiunlempt.z Z=N
omeiunlempt.e φnZEX
Assertion omeiunlempt φOnZEsum^nZOE

Proof

Step Hyp Ref Expression
1 omeiunlempt.nph nφ
2 omeiunlempt.o φOOutMeas
3 omeiunlempt.x X=domO
4 omeiunlempt.z Z=N
5 omeiunlempt.e φnZEX
6 nfmpt1 _nnZE
7 2 3 unidmex φXV
8 7 adantr φnZXV
9 ssexg EXXVEV
10 5 8 9 syl2anc φnZEV
11 elpwg EVE𝒫XEX
12 10 11 syl φnZE𝒫XEX
13 5 12 mpbird φnZE𝒫X
14 eqid nZE=nZE
15 1 13 14 fmptdf φnZE:Z𝒫X
16 1 6 2 3 4 15 omeiunle φOnZnZEnsum^nZOnZEn
17 simpr φnZnZ
18 14 fvmpt2 nZEVnZEn=E
19 17 10 18 syl2anc φnZnZEn=E
20 19 eqcomd φnZE=nZEn
21 1 20 iuneq2df φnZE=nZnZEn
22 21 fveq2d φOnZE=OnZnZEn
23 20 fveq2d φnZOE=OnZEn
24 1 23 mpteq2da φnZOE=nZOnZEn
25 24 fveq2d φsum^nZOE=sum^nZOnZEn
26 22 25 breq12d φOnZEsum^nZOEOnZnZEnsum^nZOnZEn
27 16 26 mpbird φOnZEsum^nZOE