Metamath Proof Explorer


Theorem omeiunlempt

Description: The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses omeiunlempt.nph n φ
omeiunlempt.o φ O OutMeas
omeiunlempt.x X = dom O
omeiunlempt.z Z = N
omeiunlempt.e φ n Z E X
Assertion omeiunlempt φ O n Z E sum^ n Z O E

Proof

Step Hyp Ref Expression
1 omeiunlempt.nph n φ
2 omeiunlempt.o φ O OutMeas
3 omeiunlempt.x X = dom O
4 omeiunlempt.z Z = N
5 omeiunlempt.e φ n Z E X
6 nfmpt1 _ n n Z E
7 2 3 unidmex φ X V
8 7 adantr φ n Z X V
9 ssexg E X X V E V
10 5 8 9 syl2anc φ n Z E V
11 elpwg E V E 𝒫 X E X
12 10 11 syl φ n Z E 𝒫 X E X
13 5 12 mpbird φ n Z E 𝒫 X
14 eqid n Z E = n Z E
15 1 13 14 fmptdf φ n Z E : Z 𝒫 X
16 1 6 2 3 4 15 omeiunle φ O n Z n Z E n sum^ n Z O n Z E n
17 simpr φ n Z n Z
18 14 fvmpt2 n Z E V n Z E n = E
19 17 10 18 syl2anc φ n Z n Z E n = E
20 19 eqcomd φ n Z E = n Z E n
21 1 20 iuneq2df φ n Z E = n Z n Z E n
22 21 fveq2d φ O n Z E = O n Z n Z E n
23 20 fveq2d φ n Z O E = O n Z E n
24 1 23 mpteq2da φ n Z O E = n Z O n Z E n
25 24 fveq2d φ sum^ n Z O E = sum^ n Z O n Z E n
26 22 25 breq12d φ O n Z E sum^ n Z O E O n Z n Z E n sum^ n Z O n Z E n
27 16 26 mpbird φ O n Z E sum^ n Z O E