Description: An ordered pair-like theorem for ordinal multiplication. (Contributed by Mario Carneiro, 29-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | omopth2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2l | |
|
2 | eloni | |
|
3 | 1 2 | syl | |
4 | simpl3l | |
|
5 | eloni | |
|
6 | 4 5 | syl | |
7 | ordtri3or | |
|
8 | 3 6 7 | syl2anc | |
9 | simpr | |
|
10 | simpl1l | |
|
11 | omcl | |
|
12 | 10 4 11 | syl2anc | |
13 | simpl3r | |
|
14 | onelon | |
|
15 | 10 13 14 | syl2anc | |
16 | oacl | |
|
17 | 12 15 16 | syl2anc | |
18 | eloni | |
|
19 | ordirr | |
|
20 | 17 18 19 | 3syl | |
21 | 9 20 | eqneltrd | |
22 | orc | |
|
23 | omeulem2 | |
|
24 | 23 | adantr | |
25 | 22 24 | syl5 | |
26 | 21 25 | mtod | |
27 | 26 | pm2.21d | |
28 | idd | |
|
29 | 20 9 | neleqtrrd | |
30 | orc | |
|
31 | simpl1r | |
|
32 | simpl2r | |
|
33 | omeulem2 | |
|
34 | 10 31 4 13 1 32 33 | syl222anc | |
35 | 30 34 | syl5 | |
36 | 29 35 | mtod | |
37 | 36 | pm2.21d | |
38 | 27 28 37 | 3jaod | |
39 | 8 38 | mpd | |
40 | onelon | |
|
41 | eloni | |
|
42 | 40 41 | syl | |
43 | 10 32 42 | syl2anc | |
44 | eloni | |
|
45 | 14 44 | syl | |
46 | 10 13 45 | syl2anc | |
47 | ordtri3or | |
|
48 | 43 46 47 | syl2anc | |
49 | olc | |
|
50 | 49 24 | syl5 | |
51 | 39 50 | mpand | |
52 | 21 51 | mtod | |
53 | 52 | pm2.21d | |
54 | idd | |
|
55 | 39 | eqcomd | |
56 | olc | |
|
57 | 56 34 | syl5 | |
58 | 55 57 | mpand | |
59 | 29 58 | mtod | |
60 | 59 | pm2.21d | |
61 | 53 54 60 | 3jaod | |
62 | 48 61 | mpd | |
63 | 39 62 | jca | |
64 | 63 | ex | |
65 | oveq2 | |
|
66 | id | |
|
67 | 65 66 | oveqan12d | |
68 | 64 67 | impbid1 | |