Metamath Proof Explorer


Theorem omopth2

Description: An ordered pair-like theorem for ordinal multiplication. (Contributed by Mario Carneiro, 29-May-2015)

Ref Expression
Assertion omopth2 AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EB=DC=E

Proof

Step Hyp Ref Expression
1 simpl2l AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EBOn
2 eloni BOnOrdB
3 1 2 syl AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EOrdB
4 simpl3l AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EDOn
5 eloni DOnOrdD
6 4 5 syl AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EOrdD
7 ordtri3or OrdBOrdDBDB=DDB
8 3 6 7 syl2anc AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EBDB=DDB
9 simpr AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EA𝑜B+𝑜C=A𝑜D+𝑜E
10 simpl1l AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EAOn
11 omcl AOnDOnA𝑜DOn
12 10 4 11 syl2anc AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EA𝑜DOn
13 simpl3r AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EEA
14 onelon AOnEAEOn
15 10 13 14 syl2anc AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EEOn
16 oacl A𝑜DOnEOnA𝑜D+𝑜EOn
17 12 15 16 syl2anc AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EA𝑜D+𝑜EOn
18 eloni A𝑜D+𝑜EOnOrdA𝑜D+𝑜E
19 ordirr OrdA𝑜D+𝑜E¬A𝑜D+𝑜EA𝑜D+𝑜E
20 17 18 19 3syl AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜E¬A𝑜D+𝑜EA𝑜D+𝑜E
21 9 20 eqneltrd AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜E¬A𝑜B+𝑜CA𝑜D+𝑜E
22 orc BDBDB=DCE
23 omeulem2 AOnABOnCADOnEABDB=DCEA𝑜B+𝑜CA𝑜D+𝑜E
24 23 adantr AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EBDB=DCEA𝑜B+𝑜CA𝑜D+𝑜E
25 22 24 syl5 AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EBDA𝑜B+𝑜CA𝑜D+𝑜E
26 21 25 mtod AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜E¬BD
27 26 pm2.21d AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EBDB=D
28 idd AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EB=DB=D
29 20 9 neleqtrrd AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜E¬A𝑜D+𝑜EA𝑜B+𝑜C
30 orc DBDBD=BEC
31 simpl1r AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EA
32 simpl2r AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜ECA
33 omeulem2 AOnADOnEABOnCADBD=BECA𝑜D+𝑜EA𝑜B+𝑜C
34 10 31 4 13 1 32 33 syl222anc AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EDBD=BECA𝑜D+𝑜EA𝑜B+𝑜C
35 30 34 syl5 AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EDBA𝑜D+𝑜EA𝑜B+𝑜C
36 29 35 mtod AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜E¬DB
37 36 pm2.21d AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EDBB=D
38 27 28 37 3jaod AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EBDB=DDBB=D
39 8 38 mpd AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EB=D
40 onelon AOnCACOn
41 eloni COnOrdC
42 40 41 syl AOnCAOrdC
43 10 32 42 syl2anc AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EOrdC
44 eloni EOnOrdE
45 14 44 syl AOnEAOrdE
46 10 13 45 syl2anc AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EOrdE
47 ordtri3or OrdCOrdECEC=EEC
48 43 46 47 syl2anc AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜ECEC=EEC
49 olc B=DCEBDB=DCE
50 49 24 syl5 AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EB=DCEA𝑜B+𝑜CA𝑜D+𝑜E
51 39 50 mpand AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜ECEA𝑜B+𝑜CA𝑜D+𝑜E
52 21 51 mtod AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜E¬CE
53 52 pm2.21d AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜ECEC=E
54 idd AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EC=EC=E
55 39 eqcomd AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜ED=B
56 olc D=BECDBD=BEC
57 56 34 syl5 AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜ED=BECA𝑜D+𝑜EA𝑜B+𝑜C
58 55 57 mpand AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EECA𝑜D+𝑜EA𝑜B+𝑜C
59 29 58 mtod AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜E¬EC
60 59 pm2.21d AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EECC=E
61 53 54 60 3jaod AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜ECEC=EECC=E
62 48 61 mpd AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EC=E
63 39 62 jca AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EB=DC=E
64 63 ex AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EB=DC=E
65 oveq2 B=DA𝑜B=A𝑜D
66 id C=EC=E
67 65 66 oveqan12d B=DC=EA𝑜B+𝑜C=A𝑜D+𝑜E
68 64 67 impbid1 AOnABOnCADOnEAA𝑜B+𝑜C=A𝑜D+𝑜EB=DC=E