Metamath Proof Explorer


Theorem opeliun2xp

Description: Membership of an ordered pair in a union of Cartesian products over its second component, analogous to opeliunxp . (Contributed by AV, 30-Mar-2019)

Ref Expression
Assertion opeliun2xp CyyBA×yyBCA

Proof

Step Hyp Ref Expression
1 df-iun yBA×y=x|yBxA×y
2 1 eleq2i CyyBA×yCyx|yBxA×y
3 opex CyV
4 df-rex yBxA×yyyBxA×y
5 nfv zyBxA×y
6 nfs1v yzyyB
7 nfcsb1v _yz/yA
8 nfcv _yz
9 7 8 nfxp _yz/yA×z
10 9 nfcri yxz/yA×z
11 6 10 nfan yzyyBxz/yA×z
12 sbequ12 y=zyBzyyB
13 csbeq1a y=zA=z/yA
14 sneq y=zy=z
15 13 14 xpeq12d y=zA×y=z/yA×z
16 15 eleq2d y=zxA×yxz/yA×z
17 12 16 anbi12d y=zyBxA×yzyyBxz/yA×z
18 5 11 17 cbvexv1 yyBxA×yzzyyBxz/yA×z
19 4 18 bitri yBxA×yzzyyBxz/yA×z
20 eleq1 x=Cyxz/yA×zCyz/yA×z
21 20 anbi2d x=CyzyyBxz/yA×zzyyBCyz/yA×z
22 21 exbidv x=CyzzyyBxz/yA×zzzyyBCyz/yA×z
23 19 22 bitrid x=CyyBxA×yzzyyBCyz/yA×z
24 3 23 elab Cyx|yBxA×yzzyyBCyz/yA×z
25 opelxp Cyz/yA×zCz/yAyz
26 25 anbi2i zyyBCyz/yA×zzyyBCz/yAyz
27 an13 zyyBCz/yAyzyzCz/yAzyyB
28 ancom Cz/yAzyyBzyyBCz/yA
29 28 anbi2i yzCz/yAzyyByzzyyBCz/yA
30 27 29 bitri zyyBCz/yAyzyzzyyBCz/yA
31 velsn yzy=z
32 equcom y=zz=y
33 31 32 bitri yzz=y
34 33 anbi1i yzzyyBCz/yAz=yzyyBCz/yA
35 26 30 34 3bitri zyyBCyz/yA×zz=yzyyBCz/yA
36 35 exbii zzyyBCyz/yA×zzz=yzyyBCz/yA
37 sbequ12r z=yzyyByB
38 13 equcoms z=yA=z/yA
39 38 eqcomd z=yz/yA=A
40 39 eleq2d z=yCz/yACA
41 37 40 anbi12d z=yzyyBCz/yAyBCA
42 41 equsexvw zz=yzyyBCz/yAyBCA
43 36 42 bitri zzyyBCyz/yA×zyBCA
44 2 24 43 3bitri CyyBA×yyBCA