Metamath Proof Explorer


Theorem opfi1uzind

Description: Properties of an ordered pair with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (represented as orderd pairs of vertices and edges) with a finite number of vertices, usually with L = 0 (see opfi1ind ) or L = 1 . (Contributed by AV, 22-Oct-2020) (Revised by AV, 28-Mar-2021)

Ref Expression
Hypotheses opfi1uzind.e E V
opfi1uzind.f F V
opfi1uzind.l L 0
opfi1uzind.1 v = V e = E ψ φ
opfi1uzind.2 v = w e = f ψ θ
opfi1uzind.3 v e G n v v n F G
opfi1uzind.4 w = v n f = F θ χ
opfi1uzind.base v e G v = L ψ
opfi1uzind.step y + 1 0 v e G v = y + 1 n v χ ψ
Assertion opfi1uzind V E G V Fin L V φ

Proof

Step Hyp Ref Expression
1 opfi1uzind.e E V
2 opfi1uzind.f F V
3 opfi1uzind.l L 0
4 opfi1uzind.1 v = V e = E ψ φ
5 opfi1uzind.2 v = w e = f ψ θ
6 opfi1uzind.3 v e G n v v n F G
7 opfi1uzind.4 w = v n f = F θ χ
8 opfi1uzind.base v e G v = L ψ
9 opfi1uzind.step y + 1 0 v e G v = y + 1 n v χ ψ
10 1 a1i a = V E V
11 opeq12 a = V b = E a b = V E
12 11 eleq1d a = V b = E a b G V E G
13 10 12 sbcied a = V [˙E / b]˙ a b G V E G
14 13 sbcieg V Fin [˙V / a]˙ [˙E / b]˙ a b G V E G
15 14 biimparc V E G V Fin [˙V / a]˙ [˙E / b]˙ a b G
16 15 3adant3 V E G V Fin L V [˙V / a]˙ [˙E / b]˙ a b G
17 vex v V
18 vex e V
19 opeq12 a = v b = e a b = v e
20 19 eleq1d a = v b = e a b G v e G
21 17 18 20 sbc2ie [˙v / a]˙ [˙e / b]˙ a b G v e G
22 21 6 sylanb [˙v / a]˙ [˙e / b]˙ a b G n v v n F G
23 17 difexi v n V
24 opeq12 a = v n b = F a b = v n F
25 24 eleq1d a = v n b = F a b G v n F G
26 23 2 25 sbc2ie [˙ v n / a]˙ [˙F / b]˙ a b G v n F G
27 22 26 sylibr [˙v / a]˙ [˙e / b]˙ a b G n v [˙ v n / a]˙ [˙F / b]˙ a b G
28 21 8 sylanb [˙v / a]˙ [˙e / b]˙ a b G v = L ψ
29 21 3anbi1i [˙v / a]˙ [˙e / b]˙ a b G v = y + 1 n v v e G v = y + 1 n v
30 29 anbi2i y + 1 0 [˙v / a]˙ [˙e / b]˙ a b G v = y + 1 n v y + 1 0 v e G v = y + 1 n v
31 30 9 sylanb y + 1 0 [˙v / a]˙ [˙e / b]˙ a b G v = y + 1 n v χ ψ
32 2 3 4 5 27 7 28 31 fi1uzind [˙V / a]˙ [˙E / b]˙ a b G V Fin L V φ
33 16 32 syld3an1 V E G V Fin L V φ