| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opprqus.b |
|
| 2 |
|
opprqus.o |
|
| 3 |
|
opprqus.q |
|
| 4 |
|
opprqus1r.r |
|
| 5 |
|
opprqus1r.i |
|
| 6 |
|
opprqusmulr.e |
|
| 7 |
|
opprqusmulr.x |
|
| 8 |
|
opprqusmulr.y |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
6 9 10 11
|
opprmul |
|
| 13 |
|
eqid |
|
| 14 |
4
|
ad4antr |
|
| 15 |
5
|
ad4antr |
|
| 16 |
|
simplr |
|
| 17 |
|
simp-4r |
|
| 18 |
3 1 13 9 14 15 16 17
|
qusmul2idl |
|
| 19 |
|
simpr |
|
| 20 |
|
simpllr |
|
| 21 |
19 20
|
oveq12d |
|
| 22 |
|
eqid |
|
| 23 |
2 1
|
opprbas |
|
| 24 |
|
eqid |
|
| 25 |
|
eqid |
|
| 26 |
2
|
opprring |
|
| 27 |
4 26
|
syl |
|
| 28 |
27
|
ad4antr |
|
| 29 |
2 4
|
oppr2idl |
|
| 30 |
5 29
|
eleqtrd |
|
| 31 |
30
|
ad4antr |
|
| 32 |
22 23 24 25 28 31 17 16
|
qusmul2idl |
|
| 33 |
5
|
2idllidld |
|
| 34 |
|
eqid |
|
| 35 |
1 34
|
lidlss |
|
| 36 |
33 35
|
syl |
|
| 37 |
2 1
|
oppreqg |
|
| 38 |
4 36 37
|
syl2anc |
|
| 39 |
38
|
ad4antr |
|
| 40 |
39
|
eceq2d |
|
| 41 |
20 40
|
eqtrd |
|
| 42 |
39
|
eceq2d |
|
| 43 |
19 42
|
eqtrd |
|
| 44 |
41 43
|
oveq12d |
|
| 45 |
1 13 2 24
|
opprmul |
|
| 46 |
45
|
a1i |
|
| 47 |
46
|
eceq1d |
|
| 48 |
39
|
eceq2d |
|
| 49 |
47 48
|
eqtr3d |
|
| 50 |
32 44 49
|
3eqtr4d |
|
| 51 |
18 21 50
|
3eqtr4d |
|
| 52 |
10 6
|
opprbas |
|
| 53 |
8 52
|
eleqtrdi |
|
| 54 |
53
|
ad2antrr |
|
| 55 |
3
|
a1i |
|
| 56 |
1
|
a1i |
|
| 57 |
|
ovexd |
|
| 58 |
55 56 57 4
|
qusbas |
|
| 59 |
6 52
|
eqtr3i |
|
| 60 |
58 59
|
eqtr2di |
|
| 61 |
60
|
ad2antrr |
|
| 62 |
54 61
|
eleqtrd |
|
| 63 |
|
elqsi |
|
| 64 |
62 63
|
syl |
|
| 65 |
51 64
|
r19.29a |
|
| 66 |
7 52
|
eleqtrdi |
|
| 67 |
66 60
|
eleqtrd |
|
| 68 |
|
elqsi |
|
| 69 |
67 68
|
syl |
|
| 70 |
65 69
|
r19.29a |
|
| 71 |
12 70
|
eqtrid |
|