Metamath Proof Explorer


Theorem opprring

Description: An opposite ring is a ring. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Aug-2015)

Ref Expression
Hypothesis opprbas.1 O=opprR
Assertion opprring RRingORing

Proof

Step Hyp Ref Expression
1 opprbas.1 O=opprR
2 eqid BaseR=BaseR
3 1 2 opprbas BaseR=BaseO
4 3 a1i RRingBaseR=BaseO
5 eqid +R=+R
6 1 5 oppradd +R=+O
7 6 a1i RRing+R=+O
8 eqidd RRingO=O
9 ringgrp RRingRGrp
10 3 6 grpprop RGrpOGrp
11 9 10 sylib RRingOGrp
12 eqid R=R
13 eqid O=O
14 2 12 1 13 opprmul xOy=yRx
15 2 12 ringcl RRingyBaseRxBaseRyRxBaseR
16 15 3com23 RRingxBaseRyBaseRyRxBaseR
17 14 16 eqeltrid RRingxBaseRyBaseRxOyBaseR
18 simpl RRingxBaseRyBaseRzBaseRRRing
19 simpr3 RRingxBaseRyBaseRzBaseRzBaseR
20 simpr2 RRingxBaseRyBaseRzBaseRyBaseR
21 simpr1 RRingxBaseRyBaseRzBaseRxBaseR
22 2 12 ringass RRingzBaseRyBaseRxBaseRzRyRx=zRyRx
23 18 19 20 21 22 syl13anc RRingxBaseRyBaseRzBaseRzRyRx=zRyRx
24 23 eqcomd RRingxBaseRyBaseRzBaseRzRyRx=zRyRx
25 14 oveq1i xOyOz=yRxOz
26 2 12 1 13 opprmul yRxOz=zRyRx
27 25 26 eqtri xOyOz=zRyRx
28 2 12 1 13 opprmul yOz=zRy
29 28 oveq2i xOyOz=xOzRy
30 2 12 1 13 opprmul xOzRy=zRyRx
31 29 30 eqtri xOyOz=zRyRx
32 24 27 31 3eqtr4g RRingxBaseRyBaseRzBaseRxOyOz=xOyOz
33 2 5 12 ringdir RRingyBaseRzBaseRxBaseRy+RzRx=yRx+RzRx
34 18 20 19 21 33 syl13anc RRingxBaseRyBaseRzBaseRy+RzRx=yRx+RzRx
35 2 12 1 13 opprmul xOy+Rz=y+RzRx
36 2 12 1 13 opprmul xOz=zRx
37 14 36 oveq12i xOy+RxOz=yRx+RzRx
38 34 35 37 3eqtr4g RRingxBaseRyBaseRzBaseRxOy+Rz=xOy+RxOz
39 2 5 12 ringdi RRingzBaseRxBaseRyBaseRzRx+Ry=zRx+RzRy
40 18 19 21 20 39 syl13anc RRingxBaseRyBaseRzBaseRzRx+Ry=zRx+RzRy
41 2 12 1 13 opprmul x+RyOz=zRx+Ry
42 36 28 oveq12i xOz+RyOz=zRx+RzRy
43 40 41 42 3eqtr4g RRingxBaseRyBaseRzBaseRx+RyOz=xOz+RyOz
44 eqid 1R=1R
45 2 44 ringidcl RRing1RBaseR
46 2 12 1 13 opprmul 1ROx=xR1R
47 2 12 44 ringridm RRingxBaseRxR1R=x
48 46 47 eqtrid RRingxBaseR1ROx=x
49 2 12 1 13 opprmul xO1R=1RRx
50 2 12 44 ringlidm RRingxBaseR1RRx=x
51 49 50 eqtrid RRingxBaseRxO1R=x
52 4 7 8 11 17 32 38 43 45 48 51 isringd RRingORing