Description: For any distinct pair of ordinals, if there is no ordinal between the lesser and the greater, the greater is the successor of the lesser. Lemma 1.16 of Schloeder p. 2. (Contributed by RP, 16-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | ordnexbtwnsuc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordelord | |
|
2 | ordnbtwn | |
|
3 | 2 | pm2.21d | |
4 | 3 | expd | |
5 | 4 | com12 | |
6 | 5 | adantl | |
7 | 1 6 | mpd | |
8 | sucidg | |
|
9 | 8 | adantl | |
10 | ordelon | |
|
11 | onsuc | |
|
12 | 10 11 | syl | |
13 | eleq2 | |
|
14 | eleq1 | |
|
15 | 13 14 | anbi12d | |
16 | 15 | adantl | |
17 | 12 16 | rspcedv | |
18 | 9 17 | mpand | |
19 | 7 18 | jaod | |
20 | ralnex | |
|
21 | 20 | biimpi | |
22 | 19 21 | nsyli | |
23 | ordsuci | |
|
24 | 1 23 | syl | |
25 | ordtri3 | |
|
26 | 24 25 | syldan | |
27 | 22 26 | sylibrd | |
28 | 27 | ancoms | |