Metamath Proof Explorer


Theorem ordnexbtwnsuc

Description: For any distinct pair of ordinals, if there is no ordinal between the lesser and the greater, the greater is the successor of the lesser. Lemma 1.16 of Schloeder p. 2. (Contributed by RP, 16-Jan-2025)

Ref Expression
Assertion ordnexbtwnsuc ABOrdBcOn¬AccBB=sucA

Proof

Step Hyp Ref Expression
1 ordelord OrdBABOrdA
2 ordnbtwn OrdA¬ABBsucA
3 2 pm2.21d OrdAABBsucAcOnAccB
4 3 expd OrdAABBsucAcOnAccB
5 4 com12 ABOrdABsucAcOnAccB
6 5 adantl OrdBABOrdABsucAcOnAccB
7 1 6 mpd OrdBABBsucAcOnAccB
8 sucidg ABAsucA
9 8 adantl OrdBABAsucA
10 ordelon OrdBABAOn
11 onsuc AOnsucAOn
12 10 11 syl OrdBABsucAOn
13 eleq2 c=sucAAcAsucA
14 eleq1 c=sucAcBsucAB
15 13 14 anbi12d c=sucAAccBAsucAsucAB
16 15 adantl OrdBABc=sucAAccBAsucAsucAB
17 12 16 rspcedv OrdBABAsucAsucABcOnAccB
18 9 17 mpand OrdBABsucABcOnAccB
19 7 18 jaod OrdBABBsucAsucABcOnAccB
20 ralnex cOn¬AccB¬cOnAccB
21 20 biimpi cOn¬AccB¬cOnAccB
22 19 21 nsyli OrdBABcOn¬AccB¬BsucAsucAB
23 ordsuci OrdAOrdsucA
24 1 23 syl OrdBABOrdsucA
25 ordtri3 OrdBOrdsucAB=sucA¬BsucAsucAB
26 24 25 syldan OrdBABB=sucA¬BsucAsucAB
27 22 26 sylibrd OrdBABcOn¬AccBB=sucA
28 27 ancoms ABOrdBcOn¬AccBB=sucA