Metamath Proof Explorer


Theorem orvclteel

Description: Preimage maps produced by the "less than or equal to" relation are measurable sets. (Contributed by Thierry Arnoux, 4-Feb-2017)

Ref Expression
Hypotheses dstfrv.1 φPProb
dstfrv.2 φXRndVarP
orvclteel.1 φA
Assertion orvclteel φXRV/cAdomP

Proof

Step Hyp Ref Expression
1 dstfrv.1 φPProb
2 dstfrv.2 φXRndVarP
3 orvclteel.1 φA
4 rexr xx*
5 4 ad2antrl φxxAx*
6 mnflt x−∞<x
7 6 ad2antrl φxxA−∞<x
8 simprr φxxAxA
9 7 8 jca φxxA−∞<xxA
10 5 9 jca φxxAx*−∞<xxA
11 simprl φx*−∞<xxAx*
12 3 adantr φx*−∞<xxAA
13 simprrl φx*−∞<xxA−∞<x
14 simprrr φx*−∞<xxAxA
15 xrre x*A−∞<xxAx
16 11 12 13 14 15 syl22anc φx*−∞<xxAx
17 16 14 jca φx*−∞<xxAxxA
18 10 17 impbida φxxAx*−∞<xxA
19 18 rabbidva2 φx|xA=x*|−∞<xxA
20 mnfxr −∞*
21 3 rexrd φA*
22 iocval −∞*A*−∞A=x*|−∞<xxA
23 20 21 22 sylancr φ−∞A=x*|−∞<xxA
24 19 23 eqtr4d φx|xA=−∞A
25 iocmnfcld A−∞AClsdtopGenran.
26 3 25 syl φ−∞AClsdtopGenran.
27 24 26 eqeltrd φx|xAClsdtopGenran.
28 1 2 3 27 orrvccel φXRV/cAdomP