Metamath Proof Explorer


Theorem orvclteel

Description: Preimage maps produced by the "less than or equal to" relation are measurable sets. (Contributed by Thierry Arnoux, 4-Feb-2017)

Ref Expression
Hypotheses dstfrv.1 φ P Prob
dstfrv.2 φ X RndVar P
orvclteel.1 φ A
Assertion orvclteel φ X RV/c A dom P

Proof

Step Hyp Ref Expression
1 dstfrv.1 φ P Prob
2 dstfrv.2 φ X RndVar P
3 orvclteel.1 φ A
4 rexr x x *
5 4 ad2antrl φ x x A x *
6 mnflt x −∞ < x
7 6 ad2antrl φ x x A −∞ < x
8 simprr φ x x A x A
9 7 8 jca φ x x A −∞ < x x A
10 5 9 jca φ x x A x * −∞ < x x A
11 simprl φ x * −∞ < x x A x *
12 3 adantr φ x * −∞ < x x A A
13 simprrl φ x * −∞ < x x A −∞ < x
14 simprrr φ x * −∞ < x x A x A
15 xrre x * A −∞ < x x A x
16 11 12 13 14 15 syl22anc φ x * −∞ < x x A x
17 16 14 jca φ x * −∞ < x x A x x A
18 10 17 impbida φ x x A x * −∞ < x x A
19 18 rabbidva2 φ x | x A = x * | −∞ < x x A
20 mnfxr −∞ *
21 3 rexrd φ A *
22 iocval −∞ * A * −∞ A = x * | −∞ < x x A
23 20 21 22 sylancr φ −∞ A = x * | −∞ < x x A
24 19 23 eqtr4d φ x | x A = −∞ A
25 iocmnfcld A −∞ A Clsd topGen ran .
26 3 25 syl φ −∞ A Clsd topGen ran .
27 24 26 eqeltrd φ x | x A Clsd topGen ran .
28 1 2 3 27 orrvccel φ X RV/c A dom P