Metamath Proof Explorer


Theorem osumcllem3N

Description: Lemma for osumclN . (Contributed by NM, 23-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses osumcllem.l ˙=K
osumcllem.j ˙=joinK
osumcllem.a A=AtomsK
osumcllem.p +˙=+𝑃K
osumcllem.o ˙=𝑃K
osumcllem.c C=PSubClK
osumcllem.m M=X+˙p
osumcllem.u U=˙˙X+˙Y
Assertion osumcllem3N KHLYCX˙Y˙XU=Y

Proof

Step Hyp Ref Expression
1 osumcllem.l ˙=K
2 osumcllem.j ˙=joinK
3 osumcllem.a A=AtomsK
4 osumcllem.p +˙=+𝑃K
5 osumcllem.o ˙=𝑃K
6 osumcllem.c C=PSubClK
7 osumcllem.m M=X+˙p
8 osumcllem.u U=˙˙X+˙Y
9 incom ˙XU=U˙X
10 simp1 KHLYCX˙YKHL
11 simp3 KHLYCX˙YX˙Y
12 3 6 psubclssatN KHLYCYA
13 12 3adant3 KHLYCX˙YYA
14 3 5 polssatN KHLYA˙YA
15 10 13 14 syl2anc KHLYCX˙Y˙YA
16 11 15 sstrd KHLYCX˙YXA
17 3 4 5 poldmj1N KHLXAYA˙X+˙Y=˙X˙Y
18 10 16 13 17 syl3anc KHLYCX˙Y˙X+˙Y=˙X˙Y
19 incom ˙X˙Y=˙Y˙X
20 18 19 eqtrdi KHLYCX˙Y˙X+˙Y=˙Y˙X
21 20 fveq2d KHLYCX˙Y˙˙X+˙Y=˙˙Y˙X
22 8 21 eqtrid KHLYCX˙YU=˙˙Y˙X
23 22 ineq1d KHLYCX˙YU˙X=˙˙Y˙X˙X
24 3 5 polcon2N KHLYAX˙YY˙X
25 13 24 syld3an2 KHLYCX˙YY˙X
26 3 5 poml5N KHLXAY˙X˙˙Y˙X˙X=˙˙Y
27 10 16 25 26 syl3anc KHLYCX˙Y˙˙Y˙X˙X=˙˙Y
28 5 6 psubcli2N KHLYC˙˙Y=Y
29 28 3adant3 KHLYCX˙Y˙˙Y=Y
30 23 27 29 3eqtrd KHLYCX˙YU˙X=Y
31 9 30 eqtrid KHLYCX˙Y˙XU=Y