Metamath Proof Explorer


Theorem ov3

Description: The value of an operation class abstraction. Special case. (Contributed by NM, 28-May-1995) (Revised by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses ov3.1 SV
ov3.2 w=Av=Bu=Cf=DR=S
ov3.3 F=xyz|xH×HyH×Hwvufx=wvy=ufz=R
Assertion ov3 AHBHCHDHABFCD=S

Proof

Step Hyp Ref Expression
1 ov3.1 SV
2 ov3.2 w=Av=Bu=Cf=DR=S
3 ov3.3 F=xyz|xH×HyH×Hwvufx=wvy=ufz=R
4 1 isseti zz=S
5 nfv zAHBHCHDH
6 nfcv _zAB
7 nfoprab3 _zxyz|xH×HyH×Hwvufx=wvy=ufz=R
8 3 7 nfcxfr _zF
9 nfcv _zCD
10 6 8 9 nfov _zABFCD
11 10 nfeq1 zABFCD=S
12 2 eqeq2d w=Av=Bu=Cf=Dz=Rz=S
13 12 copsex4g AHBHCHDHwvufAB=wvCD=ufz=Rz=S
14 opelxpi AHBHABH×H
15 opelxpi CHDHCDH×H
16 nfcv _xAB
17 nfcv _yAB
18 nfcv _yCD
19 nfv xwvufAB=wvy=ufz=R
20 nfoprab1 _xxyz|xH×HyH×Hwvufx=wvy=ufz=R
21 3 20 nfcxfr _xF
22 nfcv _xy
23 16 21 22 nfov _xABFy
24 23 nfeq1 xABFy=z
25 19 24 nfim xwvufAB=wvy=ufz=RABFy=z
26 nfv ywvufAB=wvCD=ufz=R
27 nfoprab2 _yxyz|xH×HyH×Hwvufx=wvy=ufz=R
28 3 27 nfcxfr _yF
29 17 28 18 nfov _yABFCD
30 29 nfeq1 yABFCD=z
31 26 30 nfim ywvufAB=wvCD=ufz=RABFCD=z
32 eqeq1 x=ABx=wvAB=wv
33 32 anbi1d x=ABx=wvy=ufAB=wvy=uf
34 33 anbi1d x=ABx=wvy=ufz=RAB=wvy=ufz=R
35 34 4exbidv x=ABwvufx=wvy=ufz=RwvufAB=wvy=ufz=R
36 oveq1 x=ABxFy=ABFy
37 36 eqeq1d x=ABxFy=zABFy=z
38 35 37 imbi12d x=ABwvufx=wvy=ufz=RxFy=zwvufAB=wvy=ufz=RABFy=z
39 eqeq1 y=CDy=ufCD=uf
40 39 anbi2d y=CDAB=wvy=ufAB=wvCD=uf
41 40 anbi1d y=CDAB=wvy=ufz=RAB=wvCD=ufz=R
42 41 4exbidv y=CDwvufAB=wvy=ufz=RwvufAB=wvCD=ufz=R
43 oveq2 y=CDABFy=ABFCD
44 43 eqeq1d y=CDABFy=zABFCD=z
45 42 44 imbi12d y=CDwvufAB=wvy=ufz=RABFy=zwvufAB=wvCD=ufz=RABFCD=z
46 moeq *zz=R
47 46 mosubop *zufy=ufz=R
48 47 mosubop *zwvx=wvufy=ufz=R
49 anass x=wvy=ufz=Rx=wvy=ufz=R
50 49 2exbii ufx=wvy=ufz=Rufx=wvy=ufz=R
51 19.42vv ufx=wvy=ufz=Rx=wvufy=ufz=R
52 50 51 bitri ufx=wvy=ufz=Rx=wvufy=ufz=R
53 52 2exbii wvufx=wvy=ufz=Rwvx=wvufy=ufz=R
54 53 mobii *zwvufx=wvy=ufz=R*zwvx=wvufy=ufz=R
55 48 54 mpbir *zwvufx=wvy=ufz=R
56 55 a1i xH×HyH×H*zwvufx=wvy=ufz=R
57 56 3 ovidi xH×HyH×Hwvufx=wvy=ufz=RxFy=z
58 16 17 18 25 31 38 45 57 vtocl2gaf ABH×HCDH×HwvufAB=wvCD=ufz=RABFCD=z
59 14 15 58 syl2an AHBHCHDHwvufAB=wvCD=ufz=RABFCD=z
60 13 59 sylbird AHBHCHDHz=SABFCD=z
61 eqeq2 z=SABFCD=zABFCD=S
62 60 61 mpbidi AHBHCHDHz=SABFCD=S
63 5 11 62 exlimd AHBHCHDHzz=SABFCD=S
64 4 63 mpi AHBHCHDHABFCD=S