Metamath Proof Explorer


Theorem ovmptss

Description: If all the values of the mapping are subsets of a class X , then so is any evaluation of the mapping. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypothesis ovmptss.1 F=xA,yBC
Assertion ovmptss xAyBCXEFGX

Proof

Step Hyp Ref Expression
1 ovmptss.1 F=xA,yBC
2 mpomptsx xA,yBC=zxAx×B1stz/x2ndz/yC
3 1 2 eqtri F=zxAx×B1stz/x2ndz/yC
4 3 fvmptss zxAx×B1stz/x2ndz/yCXFEGX
5 vex uV
6 vex vV
7 5 6 op1std z=uv1stz=u
8 7 csbeq1d z=uv1stz/x2ndz/yC=u/x2ndz/yC
9 5 6 op2ndd z=uv2ndz=v
10 9 csbeq1d z=uv2ndz/yC=v/yC
11 10 csbeq2dv z=uvu/x2ndz/yC=u/xv/yC
12 8 11 eqtrd z=uv1stz/x2ndz/yC=u/xv/yC
13 12 sseq1d z=uv1stz/x2ndz/yCXu/xv/yCX
14 13 raliunxp zuAu×u/xB1stz/x2ndz/yCXuAvu/xBu/xv/yCX
15 nfcv _ux×B
16 nfcv _xu
17 nfcsb1v _xu/xB
18 16 17 nfxp _xu×u/xB
19 sneq x=ux=u
20 csbeq1a x=uB=u/xB
21 19 20 xpeq12d x=ux×B=u×u/xB
22 15 18 21 cbviun xAx×B=uAu×u/xB
23 22 raleqi zxAx×B1stz/x2ndz/yCXzuAu×u/xB1stz/x2ndz/yCX
24 nfv uyBCX
25 nfcsb1v _xu/xv/yC
26 nfcv _xX
27 25 26 nfss xu/xv/yCX
28 17 27 nfralw xvu/xBu/xv/yCX
29 nfv vCX
30 nfcsb1v _yv/yC
31 nfcv _yX
32 30 31 nfss yv/yCX
33 csbeq1a y=vC=v/yC
34 33 sseq1d y=vCXv/yCX
35 29 32 34 cbvralw yBCXvBv/yCX
36 csbeq1a x=uv/yC=u/xv/yC
37 36 sseq1d x=uv/yCXu/xv/yCX
38 20 37 raleqbidv x=uvBv/yCXvu/xBu/xv/yCX
39 35 38 bitrid x=uyBCXvu/xBu/xv/yCX
40 24 28 39 cbvralw xAyBCXuAvu/xBu/xv/yCX
41 14 23 40 3bitr4ri xAyBCXzxAx×B1stz/x2ndz/yCX
42 df-ov EFG=FEG
43 42 sseq1i EFGXFEGX
44 4 41 43 3imtr4i xAyBCXEFGX