Metamath Proof Explorer


Theorem pcmplfin

Description: Given a paracompact topology J and an open cover U , there exists an open refinement v that is locally finite. (Contributed by Thierry Arnoux, 31-Jan-2020)

Ref Expression
Hypothesis pcmplfin.x X = J
Assertion pcmplfin J Paracomp U J X = U v 𝒫 J v LocFin J v Ref U

Proof

Step Hyp Ref Expression
1 pcmplfin.x X = J
2 ssexg U J J Paracomp U V
3 2 ancoms J Paracomp U J U V
4 3 3adant3 J Paracomp U J X = U U V
5 simp2 J Paracomp U J X = U U J
6 4 5 elpwd J Paracomp U J X = U U 𝒫 J
7 ispcmp J Paracomp J CovHasRef LocFin J
8 1 iscref J CovHasRef LocFin J J Top u 𝒫 J X = u v 𝒫 J LocFin J v Ref u
9 7 8 bitri J Paracomp J Top u 𝒫 J X = u v 𝒫 J LocFin J v Ref u
10 9 simprbi J Paracomp u 𝒫 J X = u v 𝒫 J LocFin J v Ref u
11 10 3ad2ant1 J Paracomp U J X = U u 𝒫 J X = u v 𝒫 J LocFin J v Ref u
12 simp3 J Paracomp U J X = U X = U
13 unieq u = U u = U
14 13 eqeq2d u = U X = u X = U
15 breq2 u = U v Ref u v Ref U
16 15 rexbidv u = U v 𝒫 J LocFin J v Ref u v 𝒫 J LocFin J v Ref U
17 14 16 imbi12d u = U X = u v 𝒫 J LocFin J v Ref u X = U v 𝒫 J LocFin J v Ref U
18 17 rspcv U 𝒫 J u 𝒫 J X = u v 𝒫 J LocFin J v Ref u X = U v 𝒫 J LocFin J v Ref U
19 6 11 12 18 syl3c J Paracomp U J X = U v 𝒫 J LocFin J v Ref U
20 rexin v 𝒫 J LocFin J v Ref U v 𝒫 J v LocFin J v Ref U
21 19 20 sylib J Paracomp U J X = U v 𝒫 J v LocFin J v Ref U