Metamath Proof Explorer


Theorem pcmptdvds

Description: The partial products of the prime power map form a divisibility chain. (Contributed by Mario Carneiro, 12-Mar-2014)

Ref Expression
Hypotheses pcmpt.1 F = n if n n A 1
pcmpt.2 φ n A 0
pcmpt.3 φ N
pcmptdvds.3 φ M N
Assertion pcmptdvds φ seq 1 × F N seq 1 × F M

Proof

Step Hyp Ref Expression
1 pcmpt.1 F = n if n n A 1
2 pcmpt.2 φ n A 0
3 pcmpt.3 φ N
4 pcmptdvds.3 φ M N
5 nfv m A 0
6 nfcsb1v _ n m / n A
7 6 nfel1 n m / n A 0
8 csbeq1a n = m A = m / n A
9 8 eleq1d n = m A 0 m / n A 0
10 5 7 9 cbvralw n A 0 m m / n A 0
11 2 10 sylib φ m m / n A 0
12 csbeq1 m = p m / n A = p / n A
13 12 eleq1d m = p m / n A 0 p / n A 0
14 13 rspcv p m m / n A 0 p / n A 0
15 11 14 mpan9 φ p p / n A 0
16 15 nn0ge0d φ p 0 p / n A
17 0le0 0 0
18 breq2 p / n A = if p M ¬ p N p / n A 0 0 p / n A 0 if p M ¬ p N p / n A 0
19 breq2 0 = if p M ¬ p N p / n A 0 0 0 0 if p M ¬ p N p / n A 0
20 18 19 ifboth 0 p / n A 0 0 0 if p M ¬ p N p / n A 0
21 16 17 20 sylancl φ p 0 if p M ¬ p N p / n A 0
22 nfcv _ m if n n A 1
23 nfv n m
24 nfcv _ n m
25 nfcv _ n ^
26 24 25 6 nfov _ n m m / n A
27 nfcv _ n 1
28 23 26 27 nfif _ n if m m m / n A 1
29 eleq1w n = m n m
30 id n = m n = m
31 30 8 oveq12d n = m n A = m m / n A
32 29 31 ifbieq1d n = m if n n A 1 = if m m m / n A 1
33 22 28 32 cbvmpt n if n n A 1 = m if m m m / n A 1
34 1 33 eqtri F = m if m m m / n A 1
35 11 adantr φ p m m / n A 0
36 3 adantr φ p N
37 simpr φ p p
38 4 adantr φ p M N
39 34 35 36 37 12 38 pcmpt2 φ p p pCnt seq 1 × F M seq 1 × F N = if p M ¬ p N p / n A 0
40 21 39 breqtrrd φ p 0 p pCnt seq 1 × F M seq 1 × F N
41 40 ralrimiva φ p 0 p pCnt seq 1 × F M seq 1 × F N
42 1 2 pcmptcl φ F : seq 1 × F :
43 42 simprd φ seq 1 × F :
44 eluznn N M N M
45 3 4 44 syl2anc φ M
46 43 45 ffvelrnd φ seq 1 × F M
47 46 nnzd φ seq 1 × F M
48 43 3 ffvelrnd φ seq 1 × F N
49 znq seq 1 × F M seq 1 × F N seq 1 × F M seq 1 × F N
50 47 48 49 syl2anc φ seq 1 × F M seq 1 × F N
51 pcz seq 1 × F M seq 1 × F N seq 1 × F M seq 1 × F N p 0 p pCnt seq 1 × F M seq 1 × F N
52 50 51 syl φ seq 1 × F M seq 1 × F N p 0 p pCnt seq 1 × F M seq 1 × F N
53 41 52 mpbird φ seq 1 × F M seq 1 × F N
54 48 nnzd φ seq 1 × F N
55 48 nnne0d φ seq 1 × F N 0
56 dvdsval2 seq 1 × F N seq 1 × F N 0 seq 1 × F M seq 1 × F N seq 1 × F M seq 1 × F M seq 1 × F N
57 54 55 47 56 syl3anc φ seq 1 × F N seq 1 × F M seq 1 × F M seq 1 × F N
58 53 57 mpbird φ seq 1 × F N seq 1 × F M