Metamath Proof Explorer


Theorem pconnpi1

Description: All fundamental groups in a path-connected space are isomorphic. (Contributed by Mario Carneiro, 12-Feb-2015)

Ref Expression
Hypotheses pconnpi1.x X=J
pconnpi1.p P=Jπ1A
pconnpi1.q Q=Jπ1B
pconnpi1.s S=BaseP
pconnpi1.t T=BaseQ
Assertion pconnpi1 JPConnAXBXP𝑔Q

Proof

Step Hyp Ref Expression
1 pconnpi1.x X=J
2 pconnpi1.p P=Jπ1A
3 pconnpi1.q Q=Jπ1B
4 pconnpi1.s S=BaseP
5 pconnpi1.t T=BaseQ
6 1 pconncn JPConnAXBXfIICnJf0=Af1=B
7 eqid Jπ1f0=Jπ1f0
8 eqid Jπ1f1=Jπ1f1
9 eqid BaseJπ1f0=BaseJπ1f0
10 eqid ranhBaseJπ1f0hphJx01f1x*𝑝Jh*𝑝JfphJ=ranhBaseJπ1f0hphJx01f1x*𝑝Jh*𝑝JfphJ
11 simpl1 JPConnAXBXfIICnJf0=Af1=BJPConn
12 pconntop JPConnJTop
13 11 12 syl JPConnAXBXfIICnJf0=Af1=BJTop
14 1 toptopon JTopJTopOnX
15 13 14 sylib JPConnAXBXfIICnJf0=Af1=BJTopOnX
16 simprl JPConnAXBXfIICnJf0=Af1=BfIICnJ
17 oveq2 x=y1x=1y
18 17 fveq2d x=yf1x=f1y
19 18 cbvmptv x01f1x=y01f1y
20 7 8 9 10 15 16 19 pi1xfrgim JPConnAXBXfIICnJf0=Af1=BranhBaseJπ1f0hphJx01f1x*𝑝Jh*𝑝JfphJJπ1f0GrpIsoJπ1f1
21 simprrl JPConnAXBXfIICnJf0=Af1=Bf0=A
22 21 oveq2d JPConnAXBXfIICnJf0=Af1=BJπ1f0=Jπ1A
23 22 2 eqtr4di JPConnAXBXfIICnJf0=Af1=BJπ1f0=P
24 simprrr JPConnAXBXfIICnJf0=Af1=Bf1=B
25 24 oveq2d JPConnAXBXfIICnJf0=Af1=BJπ1f1=Jπ1B
26 25 3 eqtr4di JPConnAXBXfIICnJf0=Af1=BJπ1f1=Q
27 23 26 oveq12d JPConnAXBXfIICnJf0=Af1=BJπ1f0GrpIsoJπ1f1=PGrpIsoQ
28 20 27 eleqtrd JPConnAXBXfIICnJf0=Af1=BranhBaseJπ1f0hphJx01f1x*𝑝Jh*𝑝JfphJPGrpIsoQ
29 brgici ranhBaseJπ1f0hphJx01f1x*𝑝Jh*𝑝JfphJPGrpIsoQP𝑔Q
30 28 29 syl JPConnAXBXfIICnJf0=Af1=BP𝑔Q
31 6 30 rexlimddv JPConnAXBXP𝑔Q