Description: All fundamental groups in a path-connected space are isomorphic. (Contributed by Mario Carneiro, 12-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pconnpi1.x | |
|
pconnpi1.p | |
||
pconnpi1.q | |
||
pconnpi1.s | |
||
pconnpi1.t | |
||
Assertion | pconnpi1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pconnpi1.x | |
|
2 | pconnpi1.p | |
|
3 | pconnpi1.q | |
|
4 | pconnpi1.s | |
|
5 | pconnpi1.t | |
|
6 | 1 | pconncn | |
7 | eqid | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | simpl1 | |
|
12 | pconntop | |
|
13 | 11 12 | syl | |
14 | 1 | toptopon | |
15 | 13 14 | sylib | |
16 | simprl | |
|
17 | oveq2 | |
|
18 | 17 | fveq2d | |
19 | 18 | cbvmptv | |
20 | 7 8 9 10 15 16 19 | pi1xfrgim | |
21 | simprrl | |
|
22 | 21 | oveq2d | |
23 | 22 2 | eqtr4di | |
24 | simprrr | |
|
25 | 24 | oveq2d | |
26 | 25 3 | eqtr4di | |
27 | 23 26 | oveq12d | |
28 | 20 27 | eleqtrd | |
29 | brgici | |
|
30 | 28 29 | syl | |
31 | 6 30 | rexlimddv | |