Metamath Proof Explorer


Theorem pcpre1

Description: Value of the prime power pre-function at 1. (Contributed by Mario Carneiro, 23-Feb-2014) (Revised by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses pclem.1 A=n0|PnN
pclem.2 S=supA<
Assertion pcpre1 P2N=1S=0

Proof

Step Hyp Ref Expression
1 pclem.1 A=n0|PnN
2 pclem.2 S=supA<
3 1z 1
4 eleq1 N=1N1
5 3 4 mpbiri N=1N
6 ax-1ne0 10
7 neeq1 N=1N010
8 6 7 mpbiri N=1N0
9 5 8 jca N=1NN0
10 1 2 pcprecl P2NN0S0PSN
11 9 10 sylan2 P2N=1S0PSN
12 11 simprd P2N=1PSN
13 simpr P2N=1N=1
14 12 13 breqtrd P2N=1PS1
15 eluz2nn P2P
16 15 adantr P2N=1P
17 11 simpld P2N=1S0
18 16 17 nnexpcld P2N=1PS
19 18 nnzd P2N=1PS
20 1nn 1
21 dvdsle PS1PS1PS1
22 19 20 21 sylancl P2N=1PS1PS1
23 14 22 mpd P2N=1PS1
24 16 nncnd P2N=1P
25 24 exp0d P2N=1P0=1
26 23 25 breqtrrd P2N=1PSP0
27 16 nnred P2N=1P
28 17 nn0zd P2N=1S
29 0zd P2N=10
30 eluz2gt1 P21<P
31 30 adantr P2N=11<P
32 27 28 29 31 leexp2d P2N=1S0PSP0
33 26 32 mpbird P2N=1S0
34 10 simpld P2NN0S0
35 9 34 sylan2 P2N=1S0
36 nn0le0eq0 S0S0S=0
37 35 36 syl P2N=1S0S=0
38 33 37 mpbid P2N=1S=0