Metamath Proof Explorer


Theorem pcqcl

Description: Closure of the general prime count function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion pcqcl PNN0PpCntN

Proof

Step Hyp Ref Expression
1 simprl PNN0N
2 elq NxyN=xy
3 1 2 sylib PNN0xyN=xy
4 nncn yy
5 nnne0 yy0
6 4 5 div0d y0y=0
7 6 ad2antll Pxy0y=0
8 oveq1 x=0xy=0y
9 8 eqeq1d x=0xy=00y=0
10 7 9 syl5ibrcom Pxyx=0xy=0
11 10 necon3d Pxyxy0x0
12 an32 xyx0xx0y
13 pcdiv Pxx0yPpCntxy=PpCntxPpCnty
14 pczcl Pxx0PpCntx0
15 14 nn0zd Pxx0PpCntx
16 15 3adant3 Pxx0yPpCntx
17 nnz yy
18 17 5 jca yyy0
19 pczcl Pyy0PpCnty0
20 19 nn0zd Pyy0PpCnty
21 18 20 sylan2 PyPpCnty
22 21 3adant2 Pxx0yPpCnty
23 16 22 zsubcld Pxx0yPpCntxPpCnty
24 13 23 eqeltrd Pxx0yPpCntxy
25 24 3expb Pxx0yPpCntxy
26 12 25 sylan2b Pxyx0PpCntxy
27 26 expr Pxyx0PpCntxy
28 11 27 syld Pxyxy0PpCntxy
29 neeq1 N=xyN0xy0
30 oveq2 N=xyPpCntN=PpCntxy
31 30 eleq1d N=xyPpCntNPpCntxy
32 29 31 imbi12d N=xyN0PpCntNxy0PpCntxy
33 28 32 syl5ibrcom PxyN=xyN0PpCntN
34 33 com23 PxyN0N=xyPpCntN
35 34 impancom PN0xyN=xyPpCntN
36 35 adantrl PNN0xyN=xyPpCntN
37 36 rexlimdvv PNN0xyN=xyPpCntN
38 3 37 mpd PNN0PpCntN