Metamath Proof Explorer


Theorem perfcls

Description: A subset of a perfect space is perfect iff its closure is perfect (and the closure is an actual perfect set, since it is both closed and perfect in the subspace topology). (Contributed by Mario Carneiro, 26-Dec-2016)

Ref Expression
Hypothesis lpcls.1 X=J
Assertion perfcls JFreSXJ𝑡SPerfJ𝑡clsJSPerf

Proof

Step Hyp Ref Expression
1 lpcls.1 X=J
2 1 lpcls JFreSXlimPtJclsJS=limPtJS
3 2 sseq2d JFreSXclsJSlimPtJclsJSclsJSlimPtJS
4 t1top JFreJTop
5 1 clslp JTopSXclsJS=SlimPtJS
6 4 5 sylan JFreSXclsJS=SlimPtJS
7 6 sseq1d JFreSXclsJSlimPtJSSlimPtJSlimPtJS
8 ssequn1 SlimPtJSSlimPtJS=limPtJS
9 ssun2 limPtJSSlimPtJS
10 eqss SlimPtJS=limPtJSSlimPtJSlimPtJSlimPtJSSlimPtJS
11 9 10 mpbiran2 SlimPtJS=limPtJSSlimPtJSlimPtJS
12 8 11 bitri SlimPtJSSlimPtJSlimPtJS
13 7 12 bitr4di JFreSXclsJSlimPtJSSlimPtJS
14 3 13 bitr2d JFreSXSlimPtJSclsJSlimPtJclsJS
15 eqid J𝑡S=J𝑡S
16 1 15 restperf JTopSXJ𝑡SPerfSlimPtJS
17 4 16 sylan JFreSXJ𝑡SPerfSlimPtJS
18 1 clsss3 JTopSXclsJSX
19 eqid J𝑡clsJS=J𝑡clsJS
20 1 19 restperf JTopclsJSXJ𝑡clsJSPerfclsJSlimPtJclsJS
21 18 20 syldan JTopSXJ𝑡clsJSPerfclsJSlimPtJclsJS
22 4 21 sylan JFreSXJ𝑡clsJSPerfclsJSlimPtJclsJS
23 14 17 22 3bitr4d JFreSXJ𝑡SPerfJ𝑡clsJSPerf