Metamath Proof Explorer


Theorem pexmidN

Description: Excluded middle law for closed projective subspaces, which can be shown to be equivalent to (and derivable from) the orthomodular law poml4N . Lemma 3.3(2) in Holland95 p. 215, which we prove as a special case of osumclN . (Contributed by NM, 25-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pexmid.a A = Atoms K
pexmid.p + ˙ = + 𝑃 K
pexmid.o ˙ = 𝑃 K
Assertion pexmidN K HL X A ˙ ˙ X = X X + ˙ ˙ X = A

Proof

Step Hyp Ref Expression
1 pexmid.a A = Atoms K
2 pexmid.p + ˙ = + 𝑃 K
3 pexmid.o ˙ = 𝑃 K
4 simpll K HL X A ˙ ˙ X = X K HL
5 simplr K HL X A ˙ ˙ X = X X A
6 1 3 polssatN K HL X A ˙ X A
7 6 adantr K HL X A ˙ ˙ X = X ˙ X A
8 1 2 3 poldmj1N K HL X A ˙ X A ˙ X + ˙ ˙ X = ˙ X ˙ ˙ X
9 4 5 7 8 syl3anc K HL X A ˙ ˙ X = X ˙ X + ˙ ˙ X = ˙ X ˙ ˙ X
10 1 3 pnonsingN K HL ˙ X A ˙ X ˙ ˙ X =
11 4 7 10 syl2anc K HL X A ˙ ˙ X = X ˙ X ˙ ˙ X =
12 9 11 eqtrd K HL X A ˙ ˙ X = X ˙ X + ˙ ˙ X =
13 12 fveq2d K HL X A ˙ ˙ X = X ˙ ˙ X + ˙ ˙ X = ˙
14 simpr K HL X A ˙ ˙ X = X ˙ ˙ X = X
15 eqid PSubCl K = PSubCl K
16 1 3 15 ispsubclN K HL X PSubCl K X A ˙ ˙ X = X
17 16 ad2antrr K HL X A ˙ ˙ X = X X PSubCl K X A ˙ ˙ X = X
18 5 14 17 mpbir2and K HL X A ˙ ˙ X = X X PSubCl K
19 1 3 15 polsubclN K HL X A ˙ X PSubCl K
20 19 adantr K HL X A ˙ ˙ X = X ˙ X PSubCl K
21 1 3 2polssN K HL X A X ˙ ˙ X
22 21 adantr K HL X A ˙ ˙ X = X X ˙ ˙ X
23 2 3 15 osumclN K HL X PSubCl K ˙ X PSubCl K X ˙ ˙ X X + ˙ ˙ X PSubCl K
24 4 18 20 22 23 syl31anc K HL X A ˙ ˙ X = X X + ˙ ˙ X PSubCl K
25 3 15 psubcli2N K HL X + ˙ ˙ X PSubCl K ˙ ˙ X + ˙ ˙ X = X + ˙ ˙ X
26 4 24 25 syl2anc K HL X A ˙ ˙ X = X ˙ ˙ X + ˙ ˙ X = X + ˙ ˙ X
27 1 3 pol0N K HL ˙ = A
28 27 ad2antrr K HL X A ˙ ˙ X = X ˙ = A
29 13 26 28 3eqtr3d K HL X A ˙ ˙ X = X X + ˙ ˙ X = A