Step |
Hyp |
Ref |
Expression |
1 |
|
2polat.a |
|
2 |
|
2polat.p |
|
3 |
1 2
|
2polssN |
|
4 |
3
|
ssrind |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
5 1 6 2
|
2polvalN |
|
8 |
|
eqid |
|
9 |
5 8 1 6 2
|
polval2N |
|
10 |
7 9
|
ineq12d |
|
11 |
|
hlop |
|
12 |
11
|
adantr |
|
13 |
|
hlclat |
|
14 |
|
eqid |
|
15 |
14 1
|
atssbase |
|
16 |
|
sstr |
|
17 |
15 16
|
mpan2 |
|
18 |
14 5
|
clatlubcl |
|
19 |
13 17 18
|
syl2an |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
14 8 20 21
|
opnoncon |
|
23 |
12 19 22
|
syl2anc |
|
24 |
23
|
fveq2d |
|
25 |
|
simpl |
|
26 |
14 8
|
opoccl |
|
27 |
12 19 26
|
syl2anc |
|
28 |
14 20 1 6
|
pmapmeet |
|
29 |
25 19 27 28
|
syl3anc |
|
30 |
|
hlatl |
|
31 |
30
|
adantr |
|
32 |
21 6
|
pmap0 |
|
33 |
31 32
|
syl |
|
34 |
24 29 33
|
3eqtr3d |
|
35 |
10 34
|
eqtrd |
|
36 |
4 35
|
sseqtrd |
|
37 |
|
ss0b |
|
38 |
36 37
|
sylib |
|