| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pfxcl |  | 
						
							| 2 |  | pfxcl |  | 
						
							| 3 |  | eqwrd |  | 
						
							| 4 | 1 2 3 | syl2an |  | 
						
							| 5 | 4 | 3ad2ant2 |  | 
						
							| 6 |  | simp2l |  | 
						
							| 7 |  | simpl |  | 
						
							| 8 |  | lencl |  | 
						
							| 9 | 8 | adantr |  | 
						
							| 10 |  | simpl |  | 
						
							| 11 | 7 9 10 | 3anim123i |  | 
						
							| 12 |  | elfz2nn0 |  | 
						
							| 13 | 11 12 | sylibr |  | 
						
							| 14 |  | pfxlen |  | 
						
							| 15 | 6 13 14 | syl2anc |  | 
						
							| 16 |  | simp2r |  | 
						
							| 17 |  | simpr |  | 
						
							| 18 |  | lencl |  | 
						
							| 19 | 18 | adantl |  | 
						
							| 20 |  | simpr |  | 
						
							| 21 | 17 19 20 | 3anim123i |  | 
						
							| 22 |  | elfz2nn0 |  | 
						
							| 23 | 21 22 | sylibr |  | 
						
							| 24 |  | pfxlen |  | 
						
							| 25 | 16 23 24 | syl2anc |  | 
						
							| 26 | 15 25 | eqeq12d |  | 
						
							| 27 | 26 | anbi1d |  | 
						
							| 28 | 15 | adantr |  | 
						
							| 29 | 28 | oveq2d |  | 
						
							| 30 | 29 | raleqdv |  | 
						
							| 31 | 6 | ad2antrr |  | 
						
							| 32 | 13 | ad2antrr |  | 
						
							| 33 |  | simpr |  | 
						
							| 34 |  | pfxfv |  | 
						
							| 35 | 31 32 33 34 | syl3anc |  | 
						
							| 36 | 16 | ad2antrr |  | 
						
							| 37 | 23 | ad2antrr |  | 
						
							| 38 |  | oveq2 |  | 
						
							| 39 | 38 | eleq2d |  | 
						
							| 40 | 39 | adantl |  | 
						
							| 41 | 40 | biimpa |  | 
						
							| 42 |  | pfxfv |  | 
						
							| 43 | 36 37 41 42 | syl3anc |  | 
						
							| 44 | 35 43 | eqeq12d |  | 
						
							| 45 | 44 | ralbidva |  | 
						
							| 46 | 30 45 | bitrd |  | 
						
							| 47 | 46 | pm5.32da |  | 
						
							| 48 | 5 27 47 | 3bitrd |  | 
						
							| 49 | 48 | 3com12 |  |