Metamath Proof Explorer


Theorem phpar

Description: The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses phpar.1 X=BaseSetU
phpar.2 G=+vU
phpar.4 S=𝑠OLDU
phpar.6 N=normCVU
Assertion phpar UCPreHilOLDAXBXNAGB2+NAG-1SB2=2NA2+NB2

Proof

Step Hyp Ref Expression
1 phpar.1 X=BaseSetU
2 phpar.2 G=+vU
3 phpar.4 S=𝑠OLDU
4 phpar.6 N=normCVU
5 2 fvexi GV
6 3 fvexi SV
7 4 fvexi NV
8 5 6 7 3pm3.2i GVSVNV
9 2 3 4 phop UCPreHilOLDU=GSN
10 9 eleq1d UCPreHilOLDUCPreHilOLDGSNCPreHilOLD
11 10 ibi UCPreHilOLDGSNCPreHilOLD
12 1 2 bafval X=ranG
13 12 isphg GVSVNVGSNCPreHilOLDGSNNrmCVecxXyXNxGy2+NxG-1Sy2=2Nx2+Ny2
14 13 simplbda GVSVNVGSNCPreHilOLDxXyXNxGy2+NxG-1Sy2=2Nx2+Ny2
15 8 11 14 sylancr UCPreHilOLDxXyXNxGy2+NxG-1Sy2=2Nx2+Ny2
16 15 3ad2ant1 UCPreHilOLDAXBXxXyXNxGy2+NxG-1Sy2=2Nx2+Ny2
17 fvoveq1 x=ANxGy=NAGy
18 17 oveq1d x=ANxGy2=NAGy2
19 fvoveq1 x=ANxG-1Sy=NAG-1Sy
20 19 oveq1d x=ANxG-1Sy2=NAG-1Sy2
21 18 20 oveq12d x=ANxGy2+NxG-1Sy2=NAGy2+NAG-1Sy2
22 fveq2 x=ANx=NA
23 22 oveq1d x=ANx2=NA2
24 23 oveq1d x=ANx2+Ny2=NA2+Ny2
25 24 oveq2d x=A2Nx2+Ny2=2NA2+Ny2
26 21 25 eqeq12d x=ANxGy2+NxG-1Sy2=2Nx2+Ny2NAGy2+NAG-1Sy2=2NA2+Ny2
27 oveq2 y=BAGy=AGB
28 27 fveq2d y=BNAGy=NAGB
29 28 oveq1d y=BNAGy2=NAGB2
30 oveq2 y=B-1Sy=-1SB
31 30 oveq2d y=BAG-1Sy=AG-1SB
32 31 fveq2d y=BNAG-1Sy=NAG-1SB
33 32 oveq1d y=BNAG-1Sy2=NAG-1SB2
34 29 33 oveq12d y=BNAGy2+NAG-1Sy2=NAGB2+NAG-1SB2
35 fveq2 y=BNy=NB
36 35 oveq1d y=BNy2=NB2
37 36 oveq2d y=BNA2+Ny2=NA2+NB2
38 37 oveq2d y=B2NA2+Ny2=2NA2+NB2
39 34 38 eqeq12d y=BNAGy2+NAG-1Sy2=2NA2+Ny2NAGB2+NAG-1SB2=2NA2+NB2
40 26 39 rspc2v AXBXxXyXNxGy2+NxG-1Sy2=2Nx2+Ny2NAGB2+NAG-1SB2=2NA2+NB2
41 40 3adant1 UCPreHilOLDAXBXxXyXNxGy2+NxG-1Sy2=2Nx2+Ny2NAGB2+NAG-1SB2=2NA2+NB2
42 16 41 mpd UCPreHilOLDAXBXNAGB2+NAG-1SB2=2NA2+NB2