Metamath Proof Explorer


Theorem pimconstlt0

Description: Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound less than or equal to the constant, is the empty set. Second part of Proposition 121E (a) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses pimconstlt0.x xφ
pimconstlt0.b φB
pimconstlt0.f F=xAB
pimconstlt0.c φC*
pimconstlt0.l φCB
Assertion pimconstlt0 φxA|Fx<C=

Proof

Step Hyp Ref Expression
1 pimconstlt0.x xφ
2 pimconstlt0.b φB
3 pimconstlt0.f F=xAB
4 pimconstlt0.c φC*
5 pimconstlt0.l φCB
6 5 adantr φxACB
7 3 a1i φF=xAB
8 2 adantr φxAB
9 7 8 fvmpt2d φxAFx=B
10 6 9 breqtrrd φxACFx
11 4 adantr φxAC*
12 9 8 eqeltrd φxAFx
13 12 rexrd φxAFx*
14 11 13 xrlenltd φxACFx¬Fx<C
15 10 14 mpbid φxA¬Fx<C
16 15 ex φxA¬Fx<C
17 1 16 ralrimi φxA¬Fx<C
18 rabeq0 xA|Fx<C=xA¬Fx<C
19 17 18 sylibr φxA|Fx<C=