Metamath Proof Explorer


Theorem pimgtpnf2f

Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +oo , is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2021)

Ref Expression
Hypotheses pimgtpnf2f.1 _xF
pimgtpnf2f.2 _xA
pimgtpnf2f.3 φF:A
Assertion pimgtpnf2f φxA|+∞<Fx=

Proof

Step Hyp Ref Expression
1 pimgtpnf2f.1 _xF
2 pimgtpnf2f.2 _xA
3 pimgtpnf2f.3 φF:A
4 nfcv _yA
5 nfv y+∞<Fx
6 nfcv _x+∞
7 nfcv _x<
8 nfcv _xy
9 1 8 nffv _xFy
10 6 7 9 nfbr x+∞<Fy
11 fveq2 x=yFx=Fy
12 11 breq2d x=y+∞<Fx+∞<Fy
13 2 4 5 10 12 cbvrabw xA|+∞<Fx=yA|+∞<Fy
14 3 ffvelcdmda φyAFy
15 14 rexrd φyAFy*
16 15 pnfged φyAFy+∞
17 pnfxr +∞*
18 17 a1i φyA+∞*
19 15 18 xrlenltd φyAFy+∞¬+∞<Fy
20 16 19 mpbid φyA¬+∞<Fy
21 20 ralrimiva φyA¬+∞<Fy
22 rabeq0 yA|+∞<Fy=yA¬+∞<Fy
23 21 22 sylibr φyA|+∞<Fy=
24 13 23 eqtrid φxA|+∞<Fx=