Metamath Proof Explorer


Theorem pj1fval

Description: The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015) (Revised by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses pj1fval.v B=BaseG
pj1fval.a +˙=+G
pj1fval.s ˙=LSSumG
pj1fval.p P=proj1G
Assertion pj1fval GVTBUBTPU=zT˙UιxT|yUz=x+˙y

Proof

Step Hyp Ref Expression
1 pj1fval.v B=BaseG
2 pj1fval.a +˙=+G
3 pj1fval.s ˙=LSSumG
4 pj1fval.p P=proj1G
5 elex GVGV
6 5 3ad2ant1 GVTBUBGV
7 fveq2 g=GBaseg=BaseG
8 7 1 eqtr4di g=GBaseg=B
9 8 pweqd g=G𝒫Baseg=𝒫B
10 fveq2 g=GLSSumg=LSSumG
11 10 3 eqtr4di g=GLSSumg=˙
12 11 oveqd g=GtLSSumgu=t˙u
13 fveq2 g=G+g=+G
14 13 2 eqtr4di g=G+g=+˙
15 14 oveqd g=Gx+gy=x+˙y
16 15 eqeq2d g=Gz=x+gyz=x+˙y
17 16 rexbidv g=Gyuz=x+gyyuz=x+˙y
18 17 riotabidv g=Gιxt|yuz=x+gy=ιxt|yuz=x+˙y
19 12 18 mpteq12dv g=GztLSSumguιxt|yuz=x+gy=zt˙uιxt|yuz=x+˙y
20 9 9 19 mpoeq123dv g=Gt𝒫Baseg,u𝒫BasegztLSSumguιxt|yuz=x+gy=t𝒫B,u𝒫Bzt˙uιxt|yuz=x+˙y
21 df-pj1 proj1=gVt𝒫Baseg,u𝒫BasegztLSSumguιxt|yuz=x+gy
22 1 fvexi BV
23 22 pwex 𝒫BV
24 23 23 mpoex t𝒫B,u𝒫Bzt˙uιxt|yuz=x+˙yV
25 20 21 24 fvmpt GVproj1G=t𝒫B,u𝒫Bzt˙uιxt|yuz=x+˙y
26 6 25 syl GVTBUBproj1G=t𝒫B,u𝒫Bzt˙uιxt|yuz=x+˙y
27 4 26 eqtrid GVTBUBP=t𝒫B,u𝒫Bzt˙uιxt|yuz=x+˙y
28 oveq12 t=Tu=Ut˙u=T˙U
29 28 adantl GVTBUBt=Tu=Ut˙u=T˙U
30 simprl GVTBUBt=Tu=Ut=T
31 simprr GVTBUBt=Tu=Uu=U
32 31 rexeqdv GVTBUBt=Tu=Uyuz=x+˙yyUz=x+˙y
33 30 32 riotaeqbidv GVTBUBt=Tu=Uιxt|yuz=x+˙y=ιxT|yUz=x+˙y
34 29 33 mpteq12dv GVTBUBt=Tu=Uzt˙uιxt|yuz=x+˙y=zT˙UιxT|yUz=x+˙y
35 simp2 GVTBUBTB
36 22 elpw2 T𝒫BTB
37 35 36 sylibr GVTBUBT𝒫B
38 simp3 GVTBUBUB
39 22 elpw2 U𝒫BUB
40 38 39 sylibr GVTBUBU𝒫B
41 ovex T˙UV
42 41 mptex zT˙UιxT|yUz=x+˙yV
43 42 a1i GVTBUBzT˙UιxT|yUz=x+˙yV
44 27 34 37 40 43 ovmpod GVTBUBTPU=zT˙UιxT|yUz=x+˙y