| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pj1fval.v |  | 
						
							| 2 |  | pj1fval.a |  | 
						
							| 3 |  | pj1fval.s |  | 
						
							| 4 |  | pj1fval.p |  | 
						
							| 5 |  | elex |  | 
						
							| 6 | 5 | 3ad2ant1 |  | 
						
							| 7 |  | fveq2 |  | 
						
							| 8 | 7 1 | eqtr4di |  | 
						
							| 9 | 8 | pweqd |  | 
						
							| 10 |  | fveq2 |  | 
						
							| 11 | 10 3 | eqtr4di |  | 
						
							| 12 | 11 | oveqd |  | 
						
							| 13 |  | fveq2 |  | 
						
							| 14 | 13 2 | eqtr4di |  | 
						
							| 15 | 14 | oveqd |  | 
						
							| 16 | 15 | eqeq2d |  | 
						
							| 17 | 16 | rexbidv |  | 
						
							| 18 | 17 | riotabidv |  | 
						
							| 19 | 12 18 | mpteq12dv |  | 
						
							| 20 | 9 9 19 | mpoeq123dv |  | 
						
							| 21 |  | df-pj1 |  | 
						
							| 22 | 1 | fvexi |  | 
						
							| 23 | 22 | pwex |  | 
						
							| 24 | 23 23 | mpoex |  | 
						
							| 25 | 20 21 24 | fvmpt |  | 
						
							| 26 | 6 25 | syl |  | 
						
							| 27 | 4 26 | eqtrid |  | 
						
							| 28 |  | oveq12 |  | 
						
							| 29 | 28 | adantl |  | 
						
							| 30 |  | simprl |  | 
						
							| 31 |  | simprr |  | 
						
							| 32 | 31 | rexeqdv |  | 
						
							| 33 | 30 32 | riotaeqbidv |  | 
						
							| 34 | 29 33 | mpteq12dv |  | 
						
							| 35 |  | simp2 |  | 
						
							| 36 | 22 | elpw2 |  | 
						
							| 37 | 35 36 | sylibr |  | 
						
							| 38 |  | simp3 |  | 
						
							| 39 | 22 | elpw2 |  | 
						
							| 40 | 38 39 | sylibr |  | 
						
							| 41 |  | ovex |  | 
						
							| 42 | 41 | mptex |  | 
						
							| 43 | 42 | a1i |  | 
						
							| 44 | 27 34 37 40 43 | ovmpod |  |