Metamath Proof Explorer


Theorem pjclem1

Description: Lemma for projection commutation theorem. (Contributed by NM, 16-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjclem1.1 GC
pjclem1.2 HC
Assertion pjclem1 G𝐶HprojGprojH=projGH

Proof

Step Hyp Ref Expression
1 pjclem1.1 GC
2 pjclem1.2 HC
3 1 2 cmbri G𝐶HG=GHGH
4 fveq2 G=GHGHprojG=projGHGH
5 3 4 sylbi G𝐶HprojG=projGHGH
6 inss2 GHH
7 1 choccli GC
8 2 7 chub2i HGH
9 1 2 chdmm3i GH=GH
10 8 9 sseqtrri HGH
11 6 10 sstri GHGH
12 1 2 chincli GHC
13 2 choccli HC
14 1 13 chincli GHC
15 12 14 pjscji GHGHprojGHGH=projGH+opprojGH
16 11 15 ax-mp projGHGH=projGH+opprojGH
17 16 eqeq2i projG=projGHGHprojG=projGH+opprojGH
18 coeq2 projG=projGH+opprojGHprojHprojG=projHprojGH+opprojGH
19 12 pjfi projGH:
20 14 pjfi projGH:
21 2 19 20 pjsdii projHprojGH+opprojGH=projHprojGH+opprojHprojGH
22 12 2 pjss1coi GHHprojHprojGH=projGH
23 6 22 mpbi projHprojGH=projGH
24 2 14 pjorthcoi HGHprojHprojGH=0hop
25 10 24 ax-mp projHprojGH=0hop
26 23 25 oveq12i projHprojGH+opprojHprojGH=projGH+op0hop
27 19 hoaddridi projGH+op0hop=projGH
28 21 26 27 3eqtri projHprojGH+opprojGH=projGH
29 28 eqeq2i projHprojG=projHprojGH+opprojGHprojHprojG=projGH
30 coeq2 projHprojG=projGHprojGprojHprojG=projGprojGH
31 inss1 GHG
32 12 1 pjss1coi GHGprojGprojGH=projGH
33 31 32 mpbi projGprojGH=projGH
34 30 33 eqtrdi projHprojG=projGHprojGprojHprojG=projGH
35 29 34 sylbi projHprojG=projHprojGH+opprojGHprojGprojHprojG=projGH
36 18 35 syl projG=projGH+opprojGHprojGprojHprojG=projGH
37 17 36 sylbi projG=projGHGHprojGprojHprojG=projGH
38 5 37 syl G𝐶HprojGprojHprojG=projGH
39 1 2 cmcm3i G𝐶HG𝐶H
40 7 2 cmbri G𝐶HG=GHGH
41 39 40 bitri G𝐶HG=GHGH
42 fveq2 G=GHGHprojG=projGHGH
43 inss2 GHH
44 2 1 chub2i HGH
45 1 2 chdmm4i GH=GH
46 44 45 sseqtrri HGH
47 43 46 sstri GHGH
48 7 2 chincli GHC
49 7 13 chincli GHC
50 48 49 pjscji GHGHprojGHGH=projGH+opprojGH
51 47 50 ax-mp projGHGH=projGH+opprojGH
52 51 eqeq2i projG=projGHGHprojG=projGH+opprojGH
53 coeq2 projG=projGH+opprojGHprojHprojG=projHprojGH+opprojGH
54 48 pjfi projGH:
55 49 pjfi projGH:
56 2 54 55 pjsdii projHprojGH+opprojGH=projHprojGH+opprojHprojGH
57 48 2 pjss1coi GHHprojHprojGH=projGH
58 43 57 mpbi projHprojGH=projGH
59 2 49 pjorthcoi HGHprojHprojGH=0hop
60 46 59 ax-mp projHprojGH=0hop
61 58 60 oveq12i projHprojGH+opprojHprojGH=projGH+op0hop
62 54 hoaddridi projGH+op0hop=projGH
63 56 61 62 3eqtri projHprojGH+opprojGH=projGH
64 63 eqeq2i projHprojG=projHprojGH+opprojGHprojHprojG=projGH
65 coeq2 projHprojG=projGHprojGprojHprojG=projGprojGH
66 1 13 chub1i GGH
67 1 2 chdmm2i GH=GH
68 66 67 sseqtrri GGH
69 1 48 pjorthcoi GGHprojGprojGH=0hop
70 68 69 ax-mp projGprojGH=0hop
71 65 70 eqtrdi projHprojG=projGHprojGprojHprojG=0hop
72 64 71 sylbi projHprojG=projHprojGH+opprojGHprojGprojHprojG=0hop
73 53 72 syl projG=projGH+opprojGHprojGprojHprojG=0hop
74 52 73 sylbi projG=projGHGHprojGprojHprojG=0hop
75 42 74 syl G=GHGHprojGprojHprojG=0hop
76 41 75 sylbi G𝐶HprojGprojHprojG=0hop
77 38 76 oveq12d G𝐶HprojGprojHprojG+opprojGprojHprojG=projGH+op0hop
78 df-iop Iop=proj
79 78 coeq2i projHIop=projHproj
80 2 pjfi projH:
81 80 hoid1i projHIop=projH
82 79 81 eqtr3i projHproj=projH
83 1 pjtoi projG+opprojG=proj
84 83 coeq2i projHprojG+opprojG=projHproj
85 1 pjfi projG:
86 7 pjfi projG:
87 2 85 86 pjsdii projHprojG+opprojG=projHprojG+opprojHprojG
88 84 87 eqtr3i projHproj=projHprojG+opprojHprojG
89 82 88 eqtr3i projH=projHprojG+opprojHprojG
90 89 coeq2i projGprojH=projGprojHprojG+opprojHprojG
91 80 85 hocofi projHprojG:
92 80 86 hocofi projHprojG:
93 1 91 92 pjsdii projGprojHprojG+opprojHprojG=projGprojHprojG+opprojGprojHprojG
94 90 93 eqtr2i projGprojHprojG+opprojGprojHprojG=projGprojH
95 77 94 27 3eqtr3g G𝐶HprojGprojH=projGH