Metamath Proof Explorer


Theorem pjspansn

Description: A projection on the span of a singleton. (The proof ws shortened by Mario Carneiro, 15-Dec-2013.) (Contributed by NM, 28-May-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion pjspansn A B A 0 proj span A B = B ih A norm A 2 A

Proof

Step Hyp Ref Expression
1 spansnch A span A C
2 1 3ad2ant1 A B A 0 span A C
3 simp2 A B A 0 B
4 eqid proj span A B = proj span A B
5 pjeq span A C B proj span A B = proj span A B proj span A B span A y span A B = proj span A B + y
6 4 5 mpbii span A C B proj span A B span A y span A B = proj span A B + y
7 6 simprd span A C B y span A B = proj span A B + y
8 2 3 7 syl2anc A B A 0 y span A B = proj span A B + y
9 oveq1 B = proj span A B + y B ih A = proj span A B + y ih A
10 9 ad2antll A B A 0 y span A B = proj span A B + y B ih A = proj span A B + y ih A
11 pjhcl span A C B proj span A B
12 2 3 11 syl2anc A B A 0 proj span A B
13 12 adantr A B A 0 y span A proj span A B
14 choccl span A C span A C
15 1 14 syl A span A C
16 15 3ad2ant1 A B A 0 span A C
17 chel span A C y span A y
18 16 17 sylan A B A 0 y span A y
19 simpl1 A B A 0 y span A A
20 ax-his2 proj span A B y A proj span A B + y ih A = proj span A B ih A + y ih A
21 13 18 19 20 syl3anc A B A 0 y span A proj span A B + y ih A = proj span A B ih A + y ih A
22 spansnsh A span A S
23 22 adantr A y span A span A S
24 spansnid A A span A
25 24 adantr A y span A A span A
26 simpr A y span A y span A
27 shocorth span A S A span A y span A A ih y = 0
28 27 3impib span A S A span A y span A A ih y = 0
29 23 25 26 28 syl3anc A y span A A ih y = 0
30 15 17 sylan A y span A y
31 orthcom A y A ih y = 0 y ih A = 0
32 30 31 syldan A y span A A ih y = 0 y ih A = 0
33 29 32 mpbid A y span A y ih A = 0
34 33 3ad2antl1 A B A 0 y span A y ih A = 0
35 34 oveq2d A B A 0 y span A proj span A B ih A + y ih A = proj span A B ih A + 0
36 hicl proj span A B A proj span A B ih A
37 13 19 36 syl2anc A B A 0 y span A proj span A B ih A
38 37 addid1d A B A 0 y span A proj span A B ih A + 0 = proj span A B ih A
39 21 35 38 3eqtrd A B A 0 y span A proj span A B + y ih A = proj span A B ih A
40 39 adantrr A B A 0 y span A B = proj span A B + y proj span A B + y ih A = proj span A B ih A
41 10 40 eqtrd A B A 0 y span A B = proj span A B + y B ih A = proj span A B ih A
42 41 oveq1d A B A 0 y span A B = proj span A B + y B ih A norm A 2 = proj span A B ih A norm A 2
43 42 oveq1d A B A 0 y span A B = proj span A B + y B ih A norm A 2 A = proj span A B ih A norm A 2 A
44 simpl1 A B A 0 y span A B = proj span A B + y A
45 simpl3 A B A 0 y span A B = proj span A B + y A 0
46 axpjcl span A C B proj span A B span A
47 2 3 46 syl2anc A B A 0 proj span A B span A
48 47 adantr A B A 0 y span A B = proj span A B + y proj span A B span A
49 normcan A A 0 proj span A B span A proj span A B ih A norm A 2 A = proj span A B
50 44 45 48 49 syl3anc A B A 0 y span A B = proj span A B + y proj span A B ih A norm A 2 A = proj span A B
51 43 50 eqtr2d A B A 0 y span A B = proj span A B + y proj span A B = B ih A norm A 2 A
52 8 51 rexlimddv A B A 0 proj span A B = B ih A norm A 2 A