Metamath Proof Explorer


Theorem ply1scltm

Description: A scalar is a term with zero exponent. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses ply1scltm.k K=BaseR
ply1scltm.p P=Poly1R
ply1scltm.x X=var1R
ply1scltm.m ·˙=P
ply1scltm.n N=mulGrpP
ply1scltm.e ×˙=N
ply1scltm.a A=algScP
Assertion ply1scltm RRingFKAF=F·˙0×˙X

Proof

Step Hyp Ref Expression
1 ply1scltm.k K=BaseR
2 ply1scltm.p P=Poly1R
3 ply1scltm.x X=var1R
4 ply1scltm.m ·˙=P
5 ply1scltm.n N=mulGrpP
6 ply1scltm.e ×˙=N
7 ply1scltm.a A=algScP
8 2 ply1sca2 IR=ScalarP
9 baseid Base=SlotBasendx
10 9 1 strfvi K=BaseIR
11 eqid 1P=1P
12 7 8 10 4 11 asclval FKAF=F·˙1P
13 12 adantl RRingFKAF=F·˙1P
14 eqid BaseP=BaseP
15 3 2 14 vr1cl RRingXBaseP
16 5 14 mgpbas BaseP=BaseN
17 5 11 ringidval 1P=0N
18 16 17 6 mulg0 XBaseP0×˙X=1P
19 15 18 syl RRing0×˙X=1P
20 19 adantr RRingFK0×˙X=1P
21 20 oveq2d RRingFKF·˙0×˙X=F·˙1P
22 13 21 eqtr4d RRingFKAF=F·˙0×˙X