Description: A scalar is a term with zero exponent. (Contributed by Stefan O'Rear, 29-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ply1scltm.k | |
|
ply1scltm.p | |
||
ply1scltm.x | |
||
ply1scltm.m | |
||
ply1scltm.n | |
||
ply1scltm.e | |
||
ply1scltm.a | |
||
Assertion | ply1scltm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1scltm.k | |
|
2 | ply1scltm.p | |
|
3 | ply1scltm.x | |
|
4 | ply1scltm.m | |
|
5 | ply1scltm.n | |
|
6 | ply1scltm.e | |
|
7 | ply1scltm.a | |
|
8 | 2 | ply1sca2 | |
9 | baseid | |
|
10 | 9 1 | strfvi | |
11 | eqid | |
|
12 | 7 8 10 4 11 | asclval | |
13 | 12 | adantl | |
14 | eqid | |
|
15 | 3 2 14 | vr1cl | |
16 | 5 14 | mgpbas | |
17 | 5 11 | ringidval | |
18 | 16 17 6 | mulg0 | |
19 | 15 18 | syl | |
20 | 19 | adantr | |
21 | 20 | oveq2d | |
22 | 13 21 | eqtr4d | |