Metamath Proof Explorer


Theorem pm2mpf1lem

Description: Lemma for pm2mpf1 . (Contributed by AV, 14-Oct-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pm2mpf1lem.p P=Poly1R
pm2mpf1lem.c C=NMatP
pm2mpf1lem.b B=BaseC
pm2mpf1lem.m ˙=Q
pm2mpf1lem.e ×˙=mulGrpQ
pm2mpf1lem.x X=var1A
pm2mpf1lem.a A=NMatR
pm2mpf1lem.q Q=Poly1A
Assertion pm2mpf1lem NFinRRingUBK0coe1Qk0UdecompPMatk˙k×˙XK=UdecompPMatK

Proof

Step Hyp Ref Expression
1 pm2mpf1lem.p P=Poly1R
2 pm2mpf1lem.c C=NMatP
3 pm2mpf1lem.b B=BaseC
4 pm2mpf1lem.m ˙=Q
5 pm2mpf1lem.e ×˙=mulGrpQ
6 pm2mpf1lem.x X=var1A
7 pm2mpf1lem.a A=NMatR
8 pm2mpf1lem.q Q=Poly1A
9 eqid BaseQ=BaseQ
10 7 matring NFinRRingARing
11 10 adantr NFinRRingUBK0ARing
12 eqid BaseA=BaseA
13 eqid 0A=0A
14 simpllr NFinRRingUBK0k0RRing
15 simplrl NFinRRingUBK0k0UB
16 simpr NFinRRingUBK0k0k0
17 1 2 3 7 12 decpmatcl RRingUBk0UdecompPMatkBaseA
18 14 15 16 17 syl3anc NFinRRingUBK0k0UdecompPMatkBaseA
19 18 ralrimiva NFinRRingUBK0k0UdecompPMatkBaseA
20 1 2 3 7 13 decpmatfsupp RRingUBfinSupp0Ak0UdecompPMatk
21 20 ad2ant2lr NFinRRingUBK0finSupp0Ak0UdecompPMatk
22 simprr NFinRRingUBK0K0
23 8 9 6 5 11 12 4 13 19 21 22 gsummoncoe1 NFinRRingUBK0coe1Qk0UdecompPMatk˙k×˙XK=K/kUdecompPMatk
24 csbov2g K0K/kUdecompPMatk=UdecompPMatK/kk
25 24 ad2antll NFinRRingUBK0K/kUdecompPMatk=UdecompPMatK/kk
26 csbvarg K0K/kk=K
27 26 ad2antll NFinRRingUBK0K/kk=K
28 27 oveq2d NFinRRingUBK0UdecompPMatK/kk=UdecompPMatK
29 23 25 28 3eqtrd NFinRRingUBK0coe1Qk0UdecompPMatk˙k×˙XK=UdecompPMatK