Metamath Proof Explorer


Theorem pm2mpf1lem

Description: Lemma for pm2mpf1 . (Contributed by AV, 14-Oct-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pm2mpf1lem.p P = Poly 1 R
pm2mpf1lem.c C = N Mat P
pm2mpf1lem.b B = Base C
pm2mpf1lem.m ˙ = Q
pm2mpf1lem.e × ˙ = mulGrp Q
pm2mpf1lem.x X = var 1 A
pm2mpf1lem.a A = N Mat R
pm2mpf1lem.q Q = Poly 1 A
Assertion pm2mpf1lem N Fin R Ring U B K 0 coe 1 Q k 0 U decompPMat k ˙ k × ˙ X K = U decompPMat K

Proof

Step Hyp Ref Expression
1 pm2mpf1lem.p P = Poly 1 R
2 pm2mpf1lem.c C = N Mat P
3 pm2mpf1lem.b B = Base C
4 pm2mpf1lem.m ˙ = Q
5 pm2mpf1lem.e × ˙ = mulGrp Q
6 pm2mpf1lem.x X = var 1 A
7 pm2mpf1lem.a A = N Mat R
8 pm2mpf1lem.q Q = Poly 1 A
9 eqid Base Q = Base Q
10 7 matring N Fin R Ring A Ring
11 10 adantr N Fin R Ring U B K 0 A Ring
12 eqid Base A = Base A
13 eqid 0 A = 0 A
14 simpllr N Fin R Ring U B K 0 k 0 R Ring
15 simplrl N Fin R Ring U B K 0 k 0 U B
16 simpr N Fin R Ring U B K 0 k 0 k 0
17 1 2 3 7 12 decpmatcl R Ring U B k 0 U decompPMat k Base A
18 14 15 16 17 syl3anc N Fin R Ring U B K 0 k 0 U decompPMat k Base A
19 18 ralrimiva N Fin R Ring U B K 0 k 0 U decompPMat k Base A
20 1 2 3 7 13 decpmatfsupp R Ring U B finSupp 0 A k 0 U decompPMat k
21 20 ad2ant2lr N Fin R Ring U B K 0 finSupp 0 A k 0 U decompPMat k
22 simprr N Fin R Ring U B K 0 K 0
23 8 9 6 5 11 12 4 13 19 21 22 gsummoncoe1 N Fin R Ring U B K 0 coe 1 Q k 0 U decompPMat k ˙ k × ˙ X K = K / k U decompPMat k
24 csbov2g K 0 K / k U decompPMat k = U decompPMat K / k k
25 24 ad2antll N Fin R Ring U B K 0 K / k U decompPMat k = U decompPMat K / k k
26 csbvarg K 0 K / k k = K
27 26 ad2antll N Fin R Ring U B K 0 K / k k = K
28 27 oveq2d N Fin R Ring U B K 0 U decompPMat K / k k = U decompPMat K
29 23 25 28 3eqtrd N Fin R Ring U B K 0 coe 1 Q k 0 U decompPMat k ˙ k × ˙ X K = U decompPMat K