Description: Lemma for pm2mpf1 . (Contributed by AV, 14-Oct-2019) (Revised by AV, 4-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pm2mpf1lem.p | |
|
pm2mpf1lem.c | |
||
pm2mpf1lem.b | |
||
pm2mpf1lem.m | |
||
pm2mpf1lem.e | |
||
pm2mpf1lem.x | |
||
pm2mpf1lem.a | |
||
pm2mpf1lem.q | |
||
Assertion | pm2mpf1lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2mpf1lem.p | |
|
2 | pm2mpf1lem.c | |
|
3 | pm2mpf1lem.b | |
|
4 | pm2mpf1lem.m | |
|
5 | pm2mpf1lem.e | |
|
6 | pm2mpf1lem.x | |
|
7 | pm2mpf1lem.a | |
|
8 | pm2mpf1lem.q | |
|
9 | eqid | |
|
10 | 7 | matring | |
11 | 10 | adantr | |
12 | eqid | |
|
13 | eqid | |
|
14 | simpllr | |
|
15 | simplrl | |
|
16 | simpr | |
|
17 | 1 2 3 7 12 | decpmatcl | |
18 | 14 15 16 17 | syl3anc | |
19 | 18 | ralrimiva | |
20 | 1 2 3 7 13 | decpmatfsupp | |
21 | 20 | ad2ant2lr | |
22 | simprr | |
|
23 | 8 9 6 5 11 12 4 13 19 21 22 | gsummoncoe1 | |
24 | csbov2g | |
|
25 | 24 | ad2antll | |
26 | csbvarg | |
|
27 | 26 | ad2antll | |
28 | 27 | oveq2d | |
29 | 23 25 28 | 3eqtrd | |