Metamath Proof Explorer


Theorem pm2mprhm

Description: The transformation of polynomial matrices into polynomials over matrices is a ring homomorphism. (Contributed by AV, 22-Oct-2019)

Ref Expression
Hypotheses pm2mpmhm.p P=Poly1R
pm2mpmhm.c C=NMatP
pm2mpmhm.a A=NMatR
pm2mpmhm.q Q=Poly1A
pm2mpmhm.t T=NpMatToMatPolyR
Assertion pm2mprhm NFinRRingTCRingHomQ

Proof

Step Hyp Ref Expression
1 pm2mpmhm.p P=Poly1R
2 pm2mpmhm.c C=NMatP
3 pm2mpmhm.a A=NMatR
4 pm2mpmhm.q Q=Poly1A
5 pm2mpmhm.t T=NpMatToMatPolyR
6 1 2 pmatring NFinRRingCRing
7 3 matring NFinRRingARing
8 4 ply1ring ARingQRing
9 7 8 syl NFinRRingQRing
10 eqid BaseC=BaseC
11 eqid Q=Q
12 eqid mulGrpQ=mulGrpQ
13 eqid var1A=var1A
14 eqid BaseQ=BaseQ
15 1 2 10 11 12 13 3 4 14 5 pm2mpghm NFinRRingTCGrpHomQ
16 1 2 3 4 5 pm2mpmhm NFinRRingTmulGrpCMndHommulGrpQ
17 15 16 jca NFinRRingTCGrpHomQTmulGrpCMndHommulGrpQ
18 eqid mulGrpC=mulGrpC
19 eqid mulGrpQ=mulGrpQ
20 18 19 isrhm TCRingHomQCRingQRingTCGrpHomQTmulGrpCMndHommulGrpQ
21 6 9 17 20 syl21anbrc NFinRRingTCRingHomQ