| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmapglb2.b |  | 
						
							| 2 |  | pmapglb2.g |  | 
						
							| 3 |  | pmapglb2.a |  | 
						
							| 4 |  | pmapglb2.m |  | 
						
							| 5 |  | hlop |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 2 6 | glb0N |  | 
						
							| 8 | 7 | fveq2d |  | 
						
							| 9 | 6 3 4 | pmap1N |  | 
						
							| 10 | 8 9 | eqtrd |  | 
						
							| 11 | 5 10 | syl |  | 
						
							| 12 |  | rexeq |  | 
						
							| 13 | 12 | abbidv |  | 
						
							| 14 |  | rex0 |  | 
						
							| 15 | 14 | abf |  | 
						
							| 16 | 13 15 | eqtrdi |  | 
						
							| 17 | 16 | fveq2d |  | 
						
							| 18 | 17 | fveq2d |  | 
						
							| 19 |  | riin0 |  | 
						
							| 20 | 18 19 | eqeq12d |  | 
						
							| 21 | 11 20 | syl5ibrcom |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 | 1 2 4 | pmapglbx |  | 
						
							| 24 |  | nfv |  | 
						
							| 25 |  | nfra1 |  | 
						
							| 26 | 24 25 | nfan |  | 
						
							| 27 |  | simpr |  | 
						
							| 28 |  | simpll |  | 
						
							| 29 |  | rspa |  | 
						
							| 30 | 29 | adantll |  | 
						
							| 31 | 1 3 4 | pmapssat |  | 
						
							| 32 | 28 30 31 | syl2anc |  | 
						
							| 33 | 27 32 | jca |  | 
						
							| 34 | 33 | ex |  | 
						
							| 35 | 26 34 | eximd |  | 
						
							| 36 |  | n0 |  | 
						
							| 37 |  | df-rex |  | 
						
							| 38 | 35 36 37 | 3imtr4g |  | 
						
							| 39 | 38 | 3impia |  | 
						
							| 40 |  | iinss |  | 
						
							| 41 | 39 40 | syl |  | 
						
							| 42 |  | sseqin2 |  | 
						
							| 43 | 41 42 | sylib |  | 
						
							| 44 | 23 43 | eqtr4d |  | 
						
							| 45 | 44 | 3expia |  | 
						
							| 46 | 22 45 | pm2.61dne |  |