Metamath Proof Explorer


Theorem polval2N

Description: Alternate expression for value of the projective subspace polarity function. Equation for polarity in Holland95 p. 223. (Contributed by NM, 22-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses polval2.u U=lubK
polval2.o ˙=ocK
polval2.a A=AtomsK
polval2.m M=pmapK
polval2.p P=𝑃K
Assertion polval2N KHLXAPX=M˙UX

Proof

Step Hyp Ref Expression
1 polval2.u U=lubK
2 polval2.o ˙=ocK
3 polval2.a A=AtomsK
4 polval2.m M=pmapK
5 polval2.p P=𝑃K
6 2 3 4 5 polvalN KHLXAPX=ApXM˙p
7 hlop KHLKOP
8 7 ad2antrr KHLXApXKOP
9 ssel2 XApXpA
10 9 adantll KHLXApXpA
11 eqid BaseK=BaseK
12 11 3 atbase pApBaseK
13 10 12 syl KHLXApXpBaseK
14 11 2 opoccl KOPpBaseK˙pBaseK
15 8 13 14 syl2anc KHLXApX˙pBaseK
16 15 ralrimiva KHLXApX˙pBaseK
17 eqid glbK=glbK
18 11 17 3 4 pmapglb2xN KHLpX˙pBaseKMglbKx|pXx=˙p=ApXM˙p
19 16 18 syldan KHLXAMglbKx|pXx=˙p=ApXM˙p
20 11 1 17 2 glbconxN KHLpX˙pBaseKglbKx|pXx=˙p=˙Ux|pXx=˙˙p
21 16 20 syldan KHLXAglbKx|pXx=˙p=˙Ux|pXx=˙˙p
22 11 2 opococ KOPpBaseK˙˙p=p
23 8 13 22 syl2anc KHLXApX˙˙p=p
24 23 eqeq2d KHLXApXx=˙˙px=p
25 24 rexbidva KHLXApXx=˙˙ppXx=p
26 25 abbidv KHLXAx|pXx=˙˙p=x|pXx=p
27 df-rex pXx=pppXx=p
28 equcom x=pp=x
29 28 anbi1ci pXx=pp=xpX
30 29 exbii ppXx=ppp=xpX
31 eleq1w p=xpXxX
32 31 equsexvw pp=xpXxX
33 27 30 32 3bitri pXx=pxX
34 33 abbii x|pXx=p=x|xX
35 abid2 x|xX=X
36 34 35 eqtri x|pXx=p=X
37 26 36 eqtrdi KHLXAx|pXx=˙˙p=X
38 37 fveq2d KHLXAUx|pXx=˙˙p=UX
39 38 fveq2d KHLXA˙Ux|pXx=˙˙p=˙UX
40 21 39 eqtrd KHLXAglbKx|pXx=˙p=˙UX
41 40 fveq2d KHLXAMglbKx|pXx=˙p=M˙UX
42 6 19 41 3eqtr2d KHLXAPX=M˙UX