Metamath Proof Explorer


Theorem ppisval

Description: The set of primes less than A expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion ppisval A0A=2A

Proof

Step Hyp Ref Expression
1 simpr Ax0Ax0A
2 1 elin2d Ax0Ax
3 prmuz2 xx2
4 2 3 syl Ax0Ax2
5 prmz xx
6 2 5 syl Ax0Ax
7 flcl AA
8 7 adantr Ax0AA
9 1 elin1d Ax0Ax0A
10 0re 0
11 simpl Ax0AA
12 elicc2 0Ax0Ax0xxA
13 10 11 12 sylancr Ax0Ax0Ax0xxA
14 9 13 mpbid Ax0Ax0xxA
15 14 simp3d Ax0AxA
16 flge AxxAxA
17 6 16 syldan Ax0AxAxA
18 15 17 mpbid Ax0AxA
19 eluz2 AxxAxA
20 6 8 18 19 syl3anbrc Ax0AAx
21 elfzuzb x2Ax2Ax
22 4 20 21 sylanbrc Ax0Ax2A
23 22 2 elind Ax0Ax2A
24 23 ex Ax0Ax2A
25 24 ssrdv A0A2A
26 2z 2
27 fzval2 2A2A=2A
28 26 7 27 sylancr A2A=2A
29 inss1 2A2A
30 10 a1i A0
31 id AA
32 0le2 02
33 32 a1i A02
34 flle AAA
35 iccss 0A02AA2A0A
36 30 31 33 34 35 syl22anc A2A0A
37 29 36 sstrid A2A0A
38 28 37 eqsstrd A2A0A
39 38 ssrind A2A0A
40 25 39 eqssd A0A=2A