Metamath Proof Explorer


Theorem ppisval

Description: The set of primes less than A expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion ppisval A 0 A = 2 A

Proof

Step Hyp Ref Expression
1 simpr A x 0 A x 0 A
2 1 elin2d A x 0 A x
3 prmuz2 x x 2
4 2 3 syl A x 0 A x 2
5 prmz x x
6 2 5 syl A x 0 A x
7 flcl A A
8 7 adantr A x 0 A A
9 1 elin1d A x 0 A x 0 A
10 0re 0
11 simpl A x 0 A A
12 elicc2 0 A x 0 A x 0 x x A
13 10 11 12 sylancr A x 0 A x 0 A x 0 x x A
14 9 13 mpbid A x 0 A x 0 x x A
15 14 simp3d A x 0 A x A
16 flge A x x A x A
17 6 16 syldan A x 0 A x A x A
18 15 17 mpbid A x 0 A x A
19 eluz2 A x x A x A
20 6 8 18 19 syl3anbrc A x 0 A A x
21 elfzuzb x 2 A x 2 A x
22 4 20 21 sylanbrc A x 0 A x 2 A
23 22 2 elind A x 0 A x 2 A
24 23 ex A x 0 A x 2 A
25 24 ssrdv A 0 A 2 A
26 2z 2
27 fzval2 2 A 2 A = 2 A
28 26 7 27 sylancr A 2 A = 2 A
29 inss1 2 A 2 A
30 10 a1i A 0
31 id A A
32 0le2 0 2
33 32 a1i A 0 2
34 flle A A A
35 iccss 0 A 0 2 A A 2 A 0 A
36 30 31 33 34 35 syl22anc A 2 A 0 A
37 29 36 sstrid A 2 A 0 A
38 28 37 eqsstrd A 2 A 0 A
39 38 ssrind A 2 A 0 A
40 25 39 eqssd A 0 A = 2 A