Metamath Proof Explorer


Theorem prodpr

Description: A product over a pair is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022)

Ref Expression
Hypotheses prodpr.1 k=AD=E
prodpr.2 k=BD=F
prodpr.a φAV
prodpr.b φBW
prodpr.e φE
prodpr.f φF
prodpr.3 φAB
Assertion prodpr φkABD=EF

Proof

Step Hyp Ref Expression
1 prodpr.1 k=AD=E
2 prodpr.2 k=BD=F
3 prodpr.a φAV
4 prodpr.b φBW
5 prodpr.e φE
6 prodpr.f φF
7 prodpr.3 φAB
8 disjsn2 ABAB=
9 7 8 syl φAB=
10 df-pr AB=AB
11 10 a1i φAB=AB
12 prfi ABFin
13 12 a1i φABFin
14 vex kV
15 14 elpr kABk=Ak=B
16 1 adantl φk=AD=E
17 5 adantr φk=AE
18 16 17 eqeltrd φk=AD
19 2 adantl φk=BD=F
20 6 adantr φk=BF
21 19 20 eqeltrd φk=BD
22 18 21 jaodan φk=Ak=BD
23 15 22 sylan2b φkABD
24 9 11 13 23 fprodsplit φkABD=kADkBD
25 1 prodsn AVEkAD=E
26 3 5 25 syl2anc φkAD=E
27 2 prodsn BWFkBD=F
28 4 6 27 syl2anc φkBD=F
29 26 28 oveq12d φkADkBD=EF
30 24 29 eqtrd φkABD=EF