Description: A product over a pair is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prodpr.1 | |
|
prodpr.2 | |
||
prodpr.a | |
||
prodpr.b | |
||
prodpr.e | |
||
prodpr.f | |
||
prodpr.3 | |
||
Assertion | prodpr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodpr.1 | |
|
2 | prodpr.2 | |
|
3 | prodpr.a | |
|
4 | prodpr.b | |
|
5 | prodpr.e | |
|
6 | prodpr.f | |
|
7 | prodpr.3 | |
|
8 | disjsn2 | |
|
9 | 7 8 | syl | |
10 | df-pr | |
|
11 | 10 | a1i | |
12 | prfi | |
|
13 | 12 | a1i | |
14 | vex | |
|
15 | 14 | elpr | |
16 | 1 | adantl | |
17 | 5 | adantr | |
18 | 16 17 | eqeltrd | |
19 | 2 | adantl | |
20 | 6 | adantr | |
21 | 19 20 | eqeltrd | |
22 | 18 21 | jaodan | |
23 | 15 22 | sylan2b | |
24 | 9 11 13 23 | fprodsplit | |
25 | 1 | prodsn | |
26 | 3 5 25 | syl2anc | |
27 | 2 | prodsn | |
28 | 4 6 27 | syl2anc | |
29 | 26 28 | oveq12d | |
30 | 24 29 | eqtrd | |