Metamath Proof Explorer


Theorem propeqop

Description: Equivalence for an ordered pair equal to a pair of ordered pairs. (Contributed by AV, 18-Sep-2020) (Proof shortened by AV, 16-Jun-2022) (Avoid depending on this detail.)

Ref Expression
Hypotheses snopeqop.a AV
snopeqop.b BV
propeqop.c CV
propeqop.d DV
propeqop.e EV
propeqop.f FV
Assertion propeqop ABCD=EFA=CE=AA=BF=ADA=DF=AB

Proof

Step Hyp Ref Expression
1 snopeqop.a AV
2 snopeqop.b BV
3 propeqop.c CV
4 propeqop.d DV
5 propeqop.e EV
6 propeqop.f FV
7 1 2 opeqsn AB=EA=BE=A
8 3 4 5 6 opeqpr CD=EFE=CF=CDE=CDF=C
9 7 8 anbi12i AB=ECD=EFA=BE=AE=CF=CDE=CDF=C
10 1 2 5 6 opeqpr AB=EFE=AF=ABE=ABF=A
11 3 4 opeqsn CD=EC=DE=C
12 10 11 anbi12i AB=EFCD=EE=AF=ABE=ABF=AC=DE=C
13 9 12 orbi12i AB=ECD=EFAB=EFCD=EA=BE=AE=CF=CDE=CDF=CE=AF=ABE=ABF=AC=DE=C
14 eqcom ABCD=EFEF=ABCD
15 opex ABV
16 opex CDV
17 5 6 15 16 opeqpr EF=ABCDAB=ECD=EFAB=EFCD=E
18 14 17 bitri ABCD=EFAB=ECD=EFAB=EFCD=E
19 simpl A=BF=ADA=B
20 simpr A=CE=AE=A
21 19 20 anim12i A=BF=ADA=CE=AA=BE=A
22 sneq A=CA=C
23 22 eqeq2d A=CE=AE=C
24 23 biimpa A=CE=AE=C
25 24 adantl A=BF=ADA=CE=AE=C
26 preq1 A=CAD=CD
27 26 adantr A=CE=AAD=CD
28 27 eqeq2d A=CE=AF=ADF=CD
29 28 biimpcd F=ADA=CE=AF=CD
30 29 adantl A=BF=ADA=CE=AF=CD
31 30 imp A=BF=ADA=CE=AF=CD
32 25 31 jca A=BF=ADA=CE=AE=CF=CD
33 32 orcd A=BF=ADA=CE=AE=CF=CDE=CDF=C
34 21 33 jca A=BF=ADA=CE=AA=BE=AE=CF=CDE=CDF=C
35 34 orcd A=BF=ADA=CE=AA=BE=AE=CF=CDE=CDF=CE=AF=ABE=ABF=AC=DE=C
36 35 ex A=BF=ADA=CE=AA=BE=AE=CF=CDE=CDF=CE=AF=ABE=ABF=AC=DE=C
37 simpr A=DF=ABF=AB
38 20 37 anim12i A=CE=AA=DF=ABE=AF=AB
39 38 ancoms A=DF=ABA=CE=AE=AF=AB
40 39 orcd A=DF=ABA=CE=AE=AF=ABE=ABF=A
41 simpl A=CE=AA=C
42 41 eqeq1d A=CE=AA=DC=D
43 42 biimpcd A=DA=CE=AC=D
44 43 adantr A=DF=ABA=CE=AC=D
45 44 imp A=DF=ABA=CE=AC=D
46 23 biimpd A=CE=AE=C
47 46 a1dd A=CE=AA=DF=ABE=C
48 47 imp A=CE=AA=DF=ABE=C
49 48 impcom A=DF=ABA=CE=AE=C
50 45 49 jca A=DF=ABA=CE=AC=DE=C
51 40 50 jca A=DF=ABA=CE=AE=AF=ABE=ABF=AC=DE=C
52 51 olcd A=DF=ABA=CE=AA=BE=AE=CF=CDE=CDF=CE=AF=ABE=ABF=AC=DE=C
53 52 ex A=DF=ABA=CE=AA=BE=AE=CF=CDE=CDF=CE=AF=ABE=ABF=AC=DE=C
54 36 53 jaoi A=BF=ADA=DF=ABA=CE=AA=BE=AE=CF=CDE=CDF=CE=AF=ABE=ABF=AC=DE=C
55 54 impcom A=CE=AA=BF=ADA=DF=ABA=BE=AE=CF=CDE=CDF=CE=AF=ABE=ABF=AC=DE=C
56 eqeq1 E=CE=AC=A
57 3 sneqr C=AC=A
58 57 eqcomd C=AA=C
59 56 58 syl6bi E=CE=AA=C
60 59 adantr E=CF=CDE=AA=C
61 eqeq1 E=CDE=ACD=A
62 3 4 preqsn CD=AC=DD=A
63 eqtr C=DD=AC=A
64 63 eqcomd C=DD=AA=C
65 62 64 sylbi CD=AA=C
66 61 65 syl6bi E=CDE=AA=C
67 66 adantr E=CDF=CE=AA=C
68 60 67 jaoi E=CF=CDE=CDF=CE=AA=C
69 68 com12 E=AE=CF=CDE=CDF=CA=C
70 69 adantl A=BE=AE=CF=CDE=CDF=CA=C
71 70 impcom E=CF=CDE=CDF=CA=BE=AA=C
72 simpr A=BE=AE=A
73 72 adantl E=CF=CDE=CDF=CA=BE=AE=A
74 71 73 jca E=CF=CDE=CDF=CA=BE=AA=CE=A
75 simpl A=BE=AA=B
76 75 adantr A=BE=AE=CF=CDA=B
77 eqeq1 E=AE=CA=C
78 1 sneqr A=CA=C
79 78 eqcomd A=CC=A
80 77 79 syl6bi E=AE=CC=A
81 80 adantl A=BE=AE=CC=A
82 81 impcom E=CA=BE=AC=A
83 82 preq1d E=CA=BE=ACD=AD
84 83 eqeq2d E=CA=BE=AF=CDF=AD
85 84 biimpd E=CA=BE=AF=CDF=AD
86 85 impancom E=CF=CDA=BE=AF=AD
87 86 impcom A=BE=AE=CF=CDF=AD
88 76 87 jca A=BE=AE=CF=CDA=BF=AD
89 88 ex A=BE=AE=CF=CDA=BF=AD
90 eqcom D=AA=D
91 90 biimpi D=AA=D
92 91 adantl C=DD=AA=D
93 92 adantr C=DD=AA=BA=D
94 93 adantr C=DD=AA=BF=CA=D
95 simpr C=DD=AA=BA=B
96 64 eqeq1d C=DD=AA=BC=B
97 96 biimpa C=DD=AA=BC=B
98 97 eqcomd C=DD=AA=BB=C
99 1 2 preqsn AB=CA=BB=C
100 95 98 99 sylanbrc C=DD=AA=BAB=C
101 100 eqcomd C=DD=AA=BC=AB
102 101 eqeq2d C=DD=AA=BF=CF=AB
103 102 biimpa C=DD=AA=BF=CF=AB
104 94 103 jca C=DD=AA=BF=CA=DF=AB
105 104 ex C=DD=AA=BF=CA=DF=AB
106 105 ex C=DD=AA=BF=CA=DF=AB
107 106 com23 C=DD=AF=CA=BA=DF=AB
108 62 107 sylbi CD=AF=CA=BA=DF=AB
109 61 108 syl6bi E=CDE=AF=CA=BA=DF=AB
110 109 com23 E=CDF=CE=AA=BA=DF=AB
111 110 imp E=CDF=CE=AA=BA=DF=AB
112 111 com13 A=BE=AE=CDF=CA=DF=AB
113 112 imp A=BE=AE=CDF=CA=DF=AB
114 89 113 orim12d A=BE=AE=CF=CDE=CDF=CA=BF=ADA=DF=AB
115 114 impcom E=CF=CDE=CDF=CA=BE=AA=BF=ADA=DF=AB
116 74 115 jca E=CF=CDE=CDF=CA=BE=AA=CE=AA=BF=ADA=DF=AB
117 116 ancoms A=BE=AE=CF=CDE=CDF=CA=CE=AA=BF=ADA=DF=AB
118 eqeq1 E=CE=ABC=AB
119 eqcom C=ABAB=C
120 119 99 bitri C=ABA=BB=C
121 eqtr A=BB=CA=C
122 121 adantr A=BB=CE=CA=C
123 121 eqcomd A=BB=CC=A
124 sneq C=AC=A
125 123 124 syl A=BB=CC=A
126 125 eqeq2d A=BB=CE=CE=A
127 126 biimpa A=BB=CE=CE=A
128 122 127 jca A=BB=CE=CA=CE=A
129 128 ex A=BB=CE=CA=CE=A
130 129 a1i13 C=DA=BB=CF=AE=CA=CE=A
131 130 com14 E=CA=BB=CF=AC=DA=CE=A
132 120 131 biimtrid E=CC=ABF=AC=DA=CE=A
133 118 132 sylbid E=CE=ABF=AC=DA=CE=A
134 133 com24 E=CC=DF=AE=ABA=CE=A
135 134 impcom C=DE=CF=AE=ABA=CE=A
136 135 com13 E=ABF=AC=DE=CA=CE=A
137 136 imp E=ABF=AC=DE=CA=CE=A
138 59 adantl C=DE=CE=AA=C
139 138 com12 E=AC=DE=CA=C
140 139 adantr E=AF=ABC=DE=CA=C
141 140 imp E=AF=ABC=DE=CA=C
142 simpl E=AF=ABE=A
143 142 adantr E=AF=ABC=DE=CE=A
144 141 143 jca E=AF=ABC=DE=CA=CE=A
145 144 ex E=AF=ABC=DE=CA=CE=A
146 137 145 jaoi E=ABF=AE=AF=ABC=DE=CA=CE=A
147 146 impcom C=DE=CE=ABF=AE=AF=ABA=CE=A
148 eqeq1 E=ABE=CAB=C
149 simpl A=BB=CA=B
150 149 adantr A=BB=CC=DA=B
151 150 adantr A=BB=CC=DF=AA=B
152 eqtr A=CC=DA=D
153 dfsn2 A=AA
154 preq2 A=DAA=AD
155 153 154 eqtrid A=DA=AD
156 152 155 syl A=CC=DA=AD
157 156 ex A=CC=DA=AD
158 121 157 syl A=BB=CC=DA=AD
159 158 imp A=BB=CC=DA=AD
160 159 eqeq2d A=BB=CC=DF=AF=AD
161 160 biimpa A=BB=CC=DF=AF=AD
162 151 161 jca A=BB=CC=DF=AA=BF=AD
163 162 ex A=BB=CC=DF=AA=BF=AD
164 163 ex A=BB=CC=DF=AA=BF=AD
165 164 com23 A=BB=CF=AC=DA=BF=AD
166 99 165 sylbi AB=CF=AC=DA=BF=AD
167 148 166 syl6bi E=ABE=CF=AC=DA=BF=AD
168 167 com23 E=ABF=AE=CC=DA=BF=AD
169 168 imp E=ABF=AE=CC=DA=BF=AD
170 169 com13 C=DE=CE=ABF=AA=BF=AD
171 170 imp C=DE=CE=ABF=AA=BF=AD
172 80 imp E=AE=CC=A
173 172 eqeq1d E=AE=CC=DA=D
174 173 biimpd E=AE=CC=DA=D
175 174 ex E=AE=CC=DA=D
176 175 com13 C=DE=CE=AA=D
177 176 imp C=DE=CE=AA=D
178 177 anim1d C=DE=CE=AF=ABA=DF=AB
179 171 178 orim12d C=DE=CE=ABF=AE=AF=ABA=BF=ADA=DF=AB
180 179 imp C=DE=CE=ABF=AE=AF=ABA=BF=ADA=DF=AB
181 147 180 jca C=DE=CE=ABF=AE=AF=ABA=CE=AA=BF=ADA=DF=AB
182 181 ex C=DE=CE=ABF=AE=AF=ABA=CE=AA=BF=ADA=DF=AB
183 182 com12 E=ABF=AE=AF=ABC=DE=CA=CE=AA=BF=ADA=DF=AB
184 183 orcoms E=AF=ABE=ABF=AC=DE=CA=CE=AA=BF=ADA=DF=AB
185 184 imp E=AF=ABE=ABF=AC=DE=CA=CE=AA=BF=ADA=DF=AB
186 117 185 jaoi A=BE=AE=CF=CDE=CDF=CE=AF=ABE=ABF=AC=DE=CA=CE=AA=BF=ADA=DF=AB
187 55 186 impbii A=CE=AA=BF=ADA=DF=ABA=BE=AE=CF=CDE=CDF=CE=AF=ABE=ABF=AC=DE=C
188 13 18 187 3bitr4i ABCD=EFA=CE=AA=BF=ADA=DF=AB