Description: Lemma 3 for prproropf1o . (Contributed by AV, 13-Mar-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prproropf1o.o | |
|
prproropf1o.p | |
||
prproropf1o.f | |
||
Assertion | prproropf1olem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prproropf1o.o | |
|
2 | prproropf1o.p | |
|
3 | prproropf1o.f | |
|
4 | infeq1 | |
|
5 | supeq1 | |
|
6 | 4 5 | opeq12d | |
7 | 1 | prproropf1olem0 | |
8 | simpl | |
|
9 | simprll | |
|
10 | simprlr | |
|
11 | infpr | |
|
12 | 8 9 10 11 | syl3anc | |
13 | iftrue | |
|
14 | 13 | ad2antll | |
15 | 12 14 | eqtrd | |
16 | suppr | |
|
17 | 8 9 10 16 | syl3anc | |
18 | soasym | |
|
19 | 18 | impr | |
20 | 19 | iffalsed | |
21 | 17 20 | eqtrd | |
22 | 15 21 | opeq12d | |
23 | 22 | 3adantr1 | |
24 | 7 23 | sylan2b | |
25 | 6 24 | sylan9eqr | |
26 | 1 2 | prproropf1olem1 | |
27 | opex | |
|
28 | 27 | a1i | |
29 | 3 25 26 28 | fvmptd2 | |