Metamath Proof Explorer


Theorem prproropf1olem3

Description: Lemma 3 for prproropf1o . (Contributed by AV, 13-Mar-2023)

Ref Expression
Hypotheses prproropf1o.o O=RV×V
prproropf1o.p P=p𝒫V|p=2
prproropf1o.f F=pPsuppVRsuppVR
Assertion prproropf1olem3 ROrVWOF1stW2ndW=1stW2ndW

Proof

Step Hyp Ref Expression
1 prproropf1o.o O=RV×V
2 prproropf1o.p P=p𝒫V|p=2
3 prproropf1o.f F=pPsuppVRsuppVR
4 infeq1 p=1stW2ndWsuppVR=sup1stW2ndWVR
5 supeq1 p=1stW2ndWsuppVR=sup1stW2ndWVR
6 4 5 opeq12d p=1stW2ndWsuppVRsuppVR=sup1stW2ndWVRsup1stW2ndWVR
7 1 prproropf1olem0 WOW=1stW2ndW1stWV2ndWV1stWR2ndW
8 simpl ROrV1stWV2ndWV1stWR2ndWROrV
9 simprll ROrV1stWV2ndWV1stWR2ndW1stWV
10 simprlr ROrV1stWV2ndWV1stWR2ndW2ndWV
11 infpr ROrV1stWV2ndWVsup1stW2ndWVR=if1stWR2ndW1stW2ndW
12 8 9 10 11 syl3anc ROrV1stWV2ndWV1stWR2ndWsup1stW2ndWVR=if1stWR2ndW1stW2ndW
13 iftrue 1stWR2ndWif1stWR2ndW1stW2ndW=1stW
14 13 ad2antll ROrV1stWV2ndWV1stWR2ndWif1stWR2ndW1stW2ndW=1stW
15 12 14 eqtrd ROrV1stWV2ndWV1stWR2ndWsup1stW2ndWVR=1stW
16 suppr ROrV1stWV2ndWVsup1stW2ndWVR=if2ndWR1stW1stW2ndW
17 8 9 10 16 syl3anc ROrV1stWV2ndWV1stWR2ndWsup1stW2ndWVR=if2ndWR1stW1stW2ndW
18 soasym ROrV1stWV2ndWV1stWR2ndW¬2ndWR1stW
19 18 impr ROrV1stWV2ndWV1stWR2ndW¬2ndWR1stW
20 19 iffalsed ROrV1stWV2ndWV1stWR2ndWif2ndWR1stW1stW2ndW=2ndW
21 17 20 eqtrd ROrV1stWV2ndWV1stWR2ndWsup1stW2ndWVR=2ndW
22 15 21 opeq12d ROrV1stWV2ndWV1stWR2ndWsup1stW2ndWVRsup1stW2ndWVR=1stW2ndW
23 22 3adantr1 ROrVW=1stW2ndW1stWV2ndWV1stWR2ndWsup1stW2ndWVRsup1stW2ndWVR=1stW2ndW
24 7 23 sylan2b ROrVWOsup1stW2ndWVRsup1stW2ndWVR=1stW2ndW
25 6 24 sylan9eqr ROrVWOp=1stW2ndWsuppVRsuppVR=1stW2ndW
26 1 2 prproropf1olem1 ROrVWO1stW2ndWP
27 opex 1stW2ndWV
28 27 a1i ROrVWO1stW2ndWV
29 3 25 26 28 fvmptd2 ROrVWOF1stW2ndW=1stW2ndW