Metamath Proof Explorer


Theorem psgnid

Description: Permutation sign of the identity. (Contributed by Thierry Arnoux, 21-Aug-2020)

Ref Expression
Hypothesis psgnid.s S = pmSgn D
Assertion psgnid D Fin S I D = 1

Proof

Step Hyp Ref Expression
1 psgnid.s S = pmSgn D
2 eqid SymGrp D = SymGrp D
3 2 symgid D Fin I D = 0 SymGrp D
4 3 fveq2d D Fin S I D = S 0 SymGrp D
5 eqid mulGrp fld 𝑠 1 1 = mulGrp fld 𝑠 1 1
6 2 1 5 psgnghm2 D Fin S SymGrp D GrpHom mulGrp fld 𝑠 1 1
7 eqid 0 SymGrp D = 0 SymGrp D
8 cnring fld Ring
9 eqid mulGrp fld = mulGrp fld
10 9 ringmgp fld Ring mulGrp fld Mnd
11 8 10 ax-mp mulGrp fld Mnd
12 1ex 1 V
13 12 prid1 1 1 1
14 ax-1cn 1
15 neg1cn 1
16 prssi 1 1 1 1
17 14 15 16 mp2an 1 1
18 cnfldbas = Base fld
19 9 18 mgpbas = Base mulGrp fld
20 cnfld1 1 = 1 fld
21 9 20 ringidval 1 = 0 mulGrp fld
22 5 19 21 ress0g mulGrp fld Mnd 1 1 1 1 1 1 = 0 mulGrp fld 𝑠 1 1
23 11 13 17 22 mp3an 1 = 0 mulGrp fld 𝑠 1 1
24 7 23 ghmid S SymGrp D GrpHom mulGrp fld 𝑠 1 1 S 0 SymGrp D = 1
25 6 24 syl D Fin S 0 SymGrp D = 1
26 4 25 eqtrd D Fin S I D = 1