Metamath Proof Explorer


Theorem psgnid

Description: Permutation sign of the identity. (Contributed by Thierry Arnoux, 21-Aug-2020)

Ref Expression
Hypothesis psgnid.s S=pmSgnD
Assertion psgnid DFinSID=1

Proof

Step Hyp Ref Expression
1 psgnid.s S=pmSgnD
2 eqid SymGrpD=SymGrpD
3 2 symgid DFinID=0SymGrpD
4 3 fveq2d DFinSID=S0SymGrpD
5 eqid mulGrpfld𝑠11=mulGrpfld𝑠11
6 2 1 5 psgnghm2 DFinSSymGrpDGrpHommulGrpfld𝑠11
7 eqid 0SymGrpD=0SymGrpD
8 cnring fldRing
9 eqid mulGrpfld=mulGrpfld
10 9 ringmgp fldRingmulGrpfldMnd
11 8 10 ax-mp mulGrpfldMnd
12 1ex 1V
13 12 prid1 111
14 ax-1cn 1
15 neg1cn 1
16 prssi 1111
17 14 15 16 mp2an 11
18 cnfldbas =Basefld
19 9 18 mgpbas =BasemulGrpfld
20 cnfld1 1=1fld
21 9 20 ringidval 1=0mulGrpfld
22 5 19 21 ress0g mulGrpfldMnd111111=0mulGrpfld𝑠11
23 11 13 17 22 mp3an 1=0mulGrpfld𝑠11
24 7 23 ghmid SSymGrpDGrpHommulGrpfld𝑠11S0SymGrpD=1
25 6 24 syl DFinS0SymGrpD=1
26 4 25 eqtrd DFinSID=1