Metamath Proof Explorer


Theorem psrvscacl

Description: Closure of the power series scalar multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrvscacl.s S=ImPwSerR
psrvscacl.n ·˙=S
psrvscacl.k K=BaseR
psrvscacl.b B=BaseS
psrvscacl.r φRRing
psrvscacl.x φXK
psrvscacl.y φFB
Assertion psrvscacl φX·˙FB

Proof

Step Hyp Ref Expression
1 psrvscacl.s S=ImPwSerR
2 psrvscacl.n ·˙=S
3 psrvscacl.k K=BaseR
4 psrvscacl.b B=BaseS
5 psrvscacl.r φRRing
6 psrvscacl.x φXK
7 psrvscacl.y φFB
8 eqid R=R
9 3 8 ringcl RRingxKyKxRyK
10 9 3expb RRingxKyKxRyK
11 5 10 sylan φxKyKxRyK
12 fconst6g XKf0I|f-1Fin×X:f0I|f-1FinK
13 6 12 syl φf0I|f-1Fin×X:f0I|f-1FinK
14 eqid f0I|f-1Fin=f0I|f-1Fin
15 1 3 14 4 7 psrelbas φF:f0I|f-1FinK
16 ovex 0IV
17 16 rabex f0I|f-1FinV
18 17 a1i φf0I|f-1FinV
19 inidm f0I|f-1Finf0I|f-1Fin=f0I|f-1Fin
20 11 13 15 18 18 19 off φf0I|f-1Fin×XRfF:f0I|f-1FinK
21 3 fvexi KV
22 21 17 elmap f0I|f-1Fin×XRfFKf0I|f-1Finf0I|f-1Fin×XRfF:f0I|f-1FinK
23 20 22 sylibr φf0I|f-1Fin×XRfFKf0I|f-1Fin
24 1 2 3 4 8 14 6 7 psrvsca φX·˙F=f0I|f-1Fin×XRfF
25 reldmpsr ReldommPwSer
26 25 1 4 elbasov FBIVRV
27 7 26 syl φIVRV
28 27 simpld φIV
29 1 3 14 4 28 psrbas φB=Kf0I|f-1Fin
30 23 24 29 3eltr4d φX·˙FB