Metamath Proof Explorer


Theorem ptbasin2

Description: The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypothesis ptbas.1 B=x|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
Assertion ptbasin2 AVF:ATopfiB=B

Proof

Step Hyp Ref Expression
1 ptbas.1 B=x|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
2 1 ptbasin AVF:ATopuBvBuvB
3 2 ralrimivva AVF:ATopuBvBuvB
4 1 ptuni2 AVF:ATopkAFk=B
5 ixpexg kAFkVkAFkV
6 fvex FkV
7 6 uniex FkV
8 7 a1i kAFkV
9 5 8 mprg kAFkV
10 4 9 eqeltrrdi AVF:ATopBV
11 uniexb BVBV
12 10 11 sylibr AVF:ATopBV
13 inficl BVuBvBuvBfiB=B
14 12 13 syl AVF:ATopuBvBuvBfiB=B
15 3 14 mpbid AVF:ATopfiB=B