| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ptbas.1 |
|
| 2 |
1
|
elpt |
|
| 3 |
1
|
elpt |
|
| 4 |
2 3
|
anbi12i |
|
| 5 |
|
exdistrv |
|
| 6 |
4 5
|
bitr4i |
|
| 7 |
|
an4 |
|
| 8 |
|
an6 |
|
| 9 |
|
df-3an |
|
| 10 |
8 9
|
bitri |
|
| 11 |
|
reeanv |
|
| 12 |
|
fveq2 |
|
| 13 |
|
fveq2 |
|
| 14 |
12 13
|
ineq12d |
|
| 15 |
14
|
cbvixpv |
|
| 16 |
|
simpl1l |
|
| 17 |
|
unfi |
|
| 18 |
17
|
ad2antrl |
|
| 19 |
|
simpl1r |
|
| 20 |
19
|
ffvelcdmda |
|
| 21 |
|
simpl3l |
|
| 22 |
|
fveq2 |
|
| 23 |
12 22
|
eleq12d |
|
| 24 |
23
|
rspccva |
|
| 25 |
21 24
|
sylan |
|
| 26 |
|
simpl3r |
|
| 27 |
13 22
|
eleq12d |
|
| 28 |
27
|
rspccva |
|
| 29 |
26 28
|
sylan |
|
| 30 |
|
inopn |
|
| 31 |
20 25 29 30
|
syl3anc |
|
| 32 |
|
simprrl |
|
| 33 |
|
ssun1 |
|
| 34 |
|
sscon |
|
| 35 |
33 34
|
ax-mp |
|
| 36 |
35
|
sseli |
|
| 37 |
22
|
unieqd |
|
| 38 |
12 37
|
eqeq12d |
|
| 39 |
38
|
rspccva |
|
| 40 |
32 36 39
|
syl2an |
|
| 41 |
|
simprrr |
|
| 42 |
|
ssun2 |
|
| 43 |
|
sscon |
|
| 44 |
42 43
|
ax-mp |
|
| 45 |
44
|
sseli |
|
| 46 |
13 37
|
eqeq12d |
|
| 47 |
46
|
rspccva |
|
| 48 |
41 45 47
|
syl2an |
|
| 49 |
40 48
|
ineq12d |
|
| 50 |
|
inidm |
|
| 51 |
49 50
|
eqtrdi |
|
| 52 |
1 16 18 31 51
|
elptr2 |
|
| 53 |
15 52
|
eqeltrid |
|
| 54 |
53
|
expr |
|
| 55 |
54
|
rexlimdvva |
|
| 56 |
11 55
|
biimtrrid |
|
| 57 |
56
|
3expb |
|
| 58 |
57
|
impr |
|
| 59 |
10 58
|
sylan2b |
|
| 60 |
|
ineq12 |
|
| 61 |
|
ixpin |
|
| 62 |
60 61
|
eqtr4di |
|
| 63 |
62
|
eleq1d |
|
| 64 |
59 63
|
syl5ibrcom |
|
| 65 |
64
|
expimpd |
|
| 66 |
7 65
|
biimtrid |
|
| 67 |
66
|
exlimdvv |
|
| 68 |
6 67
|
biimtrid |
|
| 69 |
68
|
imp |
|