Metamath Proof Explorer


Theorem pythagreim

Description: A simplified version of the Pythagorean theorem, where the points A and B respectively lie on the imaginary and real axes, and the right angle is at the origin. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses pythagreim.1 φ A
pythagreim.2 φ B
Assertion pythagreim φ B i A 2 = A 2 + B 2

Proof

Step Hyp Ref Expression
1 pythagreim.1 φ A
2 pythagreim.2 φ B
3 cjreim2 B A B i A = B + i A
4 2 1 3 syl2anc φ B i A = B + i A
5 4 oveq2d φ B i A B i A = B i A B + i A
6 2 recnd φ B
7 ax-icn i
8 7 a1i φ i
9 1 recnd φ A
10 8 9 mulcld φ i A
11 6 10 subcld φ B i A
12 6 10 addcld φ B + i A
13 11 12 mulcomd φ B i A B + i A = B + i A B i A
14 5 13 eqtrd φ B i A B i A = B + i A B i A
15 11 absvalsqd φ B i A 2 = B i A B i A
16 8 9 sqmuld φ i A 2 = i 2 A 2
17 i2 i 2 = 1
18 17 oveq1i i 2 A 2 = -1 A 2
19 16 18 eqtrdi φ i A 2 = -1 A 2
20 9 sqcld φ A 2
21 20 mulm1d φ -1 A 2 = A 2
22 19 21 eqtrd φ i A 2 = A 2
23 22 oveq2d φ B 2 i A 2 = B 2 A 2
24 6 sqcld φ B 2
25 24 20 subnegd φ B 2 A 2 = B 2 + A 2
26 24 20 addcomd φ B 2 + A 2 = A 2 + B 2
27 23 25 26 3eqtrd φ B 2 i A 2 = A 2 + B 2
28 subsq B i A B 2 i A 2 = B + i A B i A
29 6 10 28 syl2anc φ B 2 i A 2 = B + i A B i A
30 27 29 eqtr3d φ A 2 + B 2 = B + i A B i A
31 14 15 30 3eqtr4d φ B i A 2 = A 2 + B 2