Metamath Proof Explorer


Theorem pzriprngALT

Description: The non-unital ring ( ZZring Xs. ZZring ) is unital because it has the two-sided ideal ( ZZ X. { 0 } ) , which is unital, and the quotient of the ring and the ideal is also unital (using ring2idlqusb ). (Contributed by AV, 23-Mar-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion pzriprngALT ring×𝑠ringRing

Proof

Step Hyp Ref Expression
1 oveq2 i=×0ring×𝑠ring𝑠i=ring×𝑠ring𝑠×0
2 1 eleq1d i=×0ring×𝑠ring𝑠iRingring×𝑠ring𝑠×0Ring
3 oveq2 i=×0ring×𝑠ring~QGi=ring×𝑠ring~QG×0
4 3 oveq2d i=×0ring×𝑠ring/𝑠ring×𝑠ring~QGi=ring×𝑠ring/𝑠ring×𝑠ring~QG×0
5 4 eleq1d i=×0ring×𝑠ring/𝑠ring×𝑠ring~QGiRingring×𝑠ring/𝑠ring×𝑠ring~QG×0Ring
6 2 5 anbi12d i=×0ring×𝑠ring𝑠iRingring×𝑠ring/𝑠ring×𝑠ring~QGiRingring×𝑠ring𝑠×0Ringring×𝑠ring/𝑠ring×𝑠ring~QG×0Ring
7 eqid ring×𝑠ring=ring×𝑠ring
8 eqid ×0=×0
9 eqid ring×𝑠ring𝑠×0=ring×𝑠ring𝑠×0
10 7 8 9 pzriprnglem8 ×02Idealring×𝑠ring
11 10 a1i ×02Idealring×𝑠ring
12 7 8 9 pzriprnglem7 ring×𝑠ring𝑠×0Ring
13 12 a1i ring×𝑠ring𝑠×0Ring
14 eqid 1ring×𝑠ring𝑠×0=1ring×𝑠ring𝑠×0
15 eqid ring×𝑠ring~QG×0=ring×𝑠ring~QG×0
16 eqid ring×𝑠ring/𝑠ring×𝑠ring~QG×0=ring×𝑠ring/𝑠ring×𝑠ring~QG×0
17 7 8 9 14 15 16 pzriprnglem13 ring×𝑠ring/𝑠ring×𝑠ring~QG×0Ring
18 13 17 jctir ring×𝑠ring𝑠×0Ringring×𝑠ring/𝑠ring×𝑠ring~QG×0Ring
19 6 11 18 rspcedvdw i2Idealring×𝑠ringring×𝑠ring𝑠iRingring×𝑠ring/𝑠ring×𝑠ring~QGiRing
20 19 mptru i2Idealring×𝑠ringring×𝑠ring𝑠iRingring×𝑠ring/𝑠ring×𝑠ring~QGiRing
21 7 pzriprnglem1 ring×𝑠ringRng
22 ring2idlqusb ring×𝑠ringRngring×𝑠ringRingi2Idealring×𝑠ringring×𝑠ring𝑠iRingring×𝑠ring/𝑠ring×𝑠ring~QGiRing
23 21 22 ax-mp ring×𝑠ringRingi2Idealring×𝑠ringring×𝑠ring𝑠iRingring×𝑠ring/𝑠ring×𝑠ring~QGiRing
24 20 23 mpbir ring×𝑠ringRing