Metamath Proof Explorer


Theorem pzriprngALT

Description: The non-unital ring ( ZZring Xs. ZZring ) is unital because it has the two-sided ideal ( ZZ X. { 0 } ) , which is unital, and the quotient of the ring and the ideal is also unital (using ring2idlqusb ). (Contributed by AV, 23-Mar-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion pzriprngALT ring × 𝑠 ring Ring

Proof

Step Hyp Ref Expression
1 oveq2 i = × 0 ring × 𝑠 ring 𝑠 i = ring × 𝑠 ring 𝑠 × 0
2 1 eleq1d i = × 0 ring × 𝑠 ring 𝑠 i Ring ring × 𝑠 ring 𝑠 × 0 Ring
3 oveq2 i = × 0 ring × 𝑠 ring ~ QG i = ring × 𝑠 ring ~ QG × 0
4 3 oveq2d i = × 0 ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG i = ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG × 0
5 4 eleq1d i = × 0 ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG i Ring ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG × 0 Ring
6 2 5 anbi12d i = × 0 ring × 𝑠 ring 𝑠 i Ring ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG i Ring ring × 𝑠 ring 𝑠 × 0 Ring ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG × 0 Ring
7 eqid ring × 𝑠 ring = ring × 𝑠 ring
8 eqid × 0 = × 0
9 eqid ring × 𝑠 ring 𝑠 × 0 = ring × 𝑠 ring 𝑠 × 0
10 7 8 9 pzriprnglem8 × 0 2Ideal ring × 𝑠 ring
11 10 a1i × 0 2Ideal ring × 𝑠 ring
12 7 8 9 pzriprnglem7 ring × 𝑠 ring 𝑠 × 0 Ring
13 12 a1i ring × 𝑠 ring 𝑠 × 0 Ring
14 eqid 1 ring × 𝑠 ring 𝑠 × 0 = 1 ring × 𝑠 ring 𝑠 × 0
15 eqid ring × 𝑠 ring ~ QG × 0 = ring × 𝑠 ring ~ QG × 0
16 eqid ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG × 0 = ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG × 0
17 7 8 9 14 15 16 pzriprnglem13 ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG × 0 Ring
18 13 17 jctir ring × 𝑠 ring 𝑠 × 0 Ring ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG × 0 Ring
19 6 11 18 rspcedvdw i 2Ideal ring × 𝑠 ring ring × 𝑠 ring 𝑠 i Ring ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG i Ring
20 19 mptru i 2Ideal ring × 𝑠 ring ring × 𝑠 ring 𝑠 i Ring ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG i Ring
21 7 pzriprnglem1 ring × 𝑠 ring Rng
22 ring2idlqusb ring × 𝑠 ring Rng ring × 𝑠 ring Ring i 2Ideal ring × 𝑠 ring ring × 𝑠 ring 𝑠 i Ring ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG i Ring
23 21 22 ax-mp ring × 𝑠 ring Ring i 2Ideal ring × 𝑠 ring ring × 𝑠 ring 𝑠 i Ring ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG i Ring
24 20 23 mpbir ring × 𝑠 ring Ring