Metamath Proof Explorer


Theorem pzriprnglem7

Description: Lemma 7 for pzriprng : J is a unital ring. (Contributed by AV, 19-Mar-2025)

Ref Expression
Hypotheses pzriprng.r R = ring × 𝑠 ring
pzriprng.i I = × 0
pzriprng.j J = R 𝑠 I
Assertion pzriprnglem7 J Ring

Proof

Step Hyp Ref Expression
1 pzriprng.r R = ring × 𝑠 ring
2 pzriprng.i I = × 0
3 pzriprng.j J = R 𝑠 I
4 1 2 pzriprnglem5 I SubRng R
5 3 subrngrng I SubRng R J Rng
6 4 5 ax-mp J Rng
7 1z 1
8 c0ex 0 V
9 8 snid 0 0
10 7 9 opelxpii 1 0 × 0
11 3 subrngbas I SubRng R I = Base J
12 4 11 ax-mp I = Base J
13 12 2 eqtr3i Base J = × 0
14 10 13 eleqtrri 1 0 Base J
15 oveq1 i = 1 0 i J x = 1 0 J x
16 15 eqeq1d i = 1 0 i J x = x 1 0 J x = x
17 16 ovanraleqv i = 1 0 x Base J i J x = x x J i = x x Base J 1 0 J x = x x J 1 0 = x
18 id 1 0 Base J 1 0 Base J
19 12 eleq2i x I x Base J
20 1 2 3 pzriprnglem6 x I 1 0 J x = x x J 1 0 = x
21 19 20 sylbir x Base J 1 0 J x = x x J 1 0 = x
22 21 a1i 1 0 Base J x Base J 1 0 J x = x x J 1 0 = x
23 22 ralrimiv 1 0 Base J x Base J 1 0 J x = x x J 1 0 = x
24 17 18 23 rspcedvdw 1 0 Base J i Base J x Base J i J x = x x J i = x
25 14 24 ax-mp i Base J x Base J i J x = x x J i = x
26 eqid Base J = Base J
27 eqid J = J
28 26 27 isringrng J Ring J Rng i Base J x Base J i J x = x x J i = x
29 6 25 28 mpbir2an J Ring