Metamath Proof Explorer


Theorem q1pval

Description: Value of the univariate polynomial quotient function. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses q1pval.q Q=quot1pR
q1pval.p P=Poly1R
q1pval.b B=BaseP
q1pval.d D=deg1R
q1pval.m -˙=-P
q1pval.t ·˙=P
Assertion q1pval FBGBFQG=ιqB|DF-˙q·˙G<DG

Proof

Step Hyp Ref Expression
1 q1pval.q Q=quot1pR
2 q1pval.p P=Poly1R
3 q1pval.b B=BaseP
4 q1pval.d D=deg1R
5 q1pval.m -˙=-P
6 q1pval.t ·˙=P
7 2 3 elbasfv GBRV
8 fveq2 r=RPoly1r=Poly1R
9 8 2 eqtr4di r=RPoly1r=P
10 9 csbeq1d r=RPoly1r/pBasep/bfb,gbιqb|deg1rf-pqpg<deg1rg=P/pBasep/bfb,gbιqb|deg1rf-pqpg<deg1rg
11 2 fvexi PV
12 11 a1i r=RPV
13 fveq2 p=PBasep=BaseP
14 13 adantl r=Rp=PBasep=BaseP
15 14 3 eqtr4di r=Rp=PBasep=B
16 15 csbeq1d r=Rp=PBasep/bfb,gbιqb|deg1rf-pqpg<deg1rg=B/bfb,gbιqb|deg1rf-pqpg<deg1rg
17 3 fvexi BV
18 17 a1i r=Rp=PBV
19 simpr r=Rp=Pb=Bb=B
20 fveq2 r=Rdeg1r=deg1R
21 20 ad2antrr r=Rp=Pb=Bdeg1r=deg1R
22 21 4 eqtr4di r=Rp=Pb=Bdeg1r=D
23 fveq2 p=P-p=-P
24 23 ad2antlr r=Rp=Pb=B-p=-P
25 24 5 eqtr4di r=Rp=Pb=B-p=-˙
26 eqidd r=Rp=Pb=Bf=f
27 fveq2 p=Pp=P
28 27 ad2antlr r=Rp=Pb=Bp=P
29 28 6 eqtr4di r=Rp=Pb=Bp=·˙
30 29 oveqd r=Rp=Pb=Bqpg=q·˙g
31 25 26 30 oveq123d r=Rp=Pb=Bf-pqpg=f-˙q·˙g
32 22 31 fveq12d r=Rp=Pb=Bdeg1rf-pqpg=Df-˙q·˙g
33 22 fveq1d r=Rp=Pb=Bdeg1rg=Dg
34 32 33 breq12d r=Rp=Pb=Bdeg1rf-pqpg<deg1rgDf-˙q·˙g<Dg
35 19 34 riotaeqbidv r=Rp=Pb=Bιqb|deg1rf-pqpg<deg1rg=ιqB|Df-˙q·˙g<Dg
36 19 19 35 mpoeq123dv r=Rp=Pb=Bfb,gbιqb|deg1rf-pqpg<deg1rg=fB,gBιqB|Df-˙q·˙g<Dg
37 18 36 csbied r=Rp=PB/bfb,gbιqb|deg1rf-pqpg<deg1rg=fB,gBιqB|Df-˙q·˙g<Dg
38 16 37 eqtrd r=Rp=PBasep/bfb,gbιqb|deg1rf-pqpg<deg1rg=fB,gBιqB|Df-˙q·˙g<Dg
39 12 38 csbied r=RP/pBasep/bfb,gbιqb|deg1rf-pqpg<deg1rg=fB,gBιqB|Df-˙q·˙g<Dg
40 10 39 eqtrd r=RPoly1r/pBasep/bfb,gbιqb|deg1rf-pqpg<deg1rg=fB,gBιqB|Df-˙q·˙g<Dg
41 df-q1p quot1p=rVPoly1r/pBasep/bfb,gbιqb|deg1rf-pqpg<deg1rg
42 17 17 mpoex fB,gBιqB|Df-˙q·˙g<DgV
43 40 41 42 fvmpt RVquot1pR=fB,gBιqB|Df-˙q·˙g<Dg
44 1 43 eqtrid RVQ=fB,gBιqB|Df-˙q·˙g<Dg
45 7 44 syl GBQ=fB,gBιqB|Df-˙q·˙g<Dg
46 45 adantl FBGBQ=fB,gBιqB|Df-˙q·˙g<Dg
47 id f=Ff=F
48 oveq2 g=Gq·˙g=q·˙G
49 47 48 oveqan12d f=Fg=Gf-˙q·˙g=F-˙q·˙G
50 49 fveq2d f=Fg=GDf-˙q·˙g=DF-˙q·˙G
51 fveq2 g=GDg=DG
52 51 adantl f=Fg=GDg=DG
53 50 52 breq12d f=Fg=GDf-˙q·˙g<DgDF-˙q·˙G<DG
54 53 riotabidv f=Fg=GιqB|Df-˙q·˙g<Dg=ιqB|DF-˙q·˙G<DG
55 54 adantl FBGBf=Fg=GιqB|Df-˙q·˙g<Dg=ιqB|DF-˙q·˙G<DG
56 simpl FBGBFB
57 simpr FBGBGB
58 riotaex ιqB|DF-˙q·˙G<DGV
59 58 a1i FBGBιqB|DF-˙q·˙G<DGV
60 46 55 56 57 59 ovmpod FBGBFQG=ιqB|DF-˙q·˙G<DG