Step |
Hyp |
Ref |
Expression |
1 |
|
q1pval.q |
|
2 |
|
q1pval.p |
|
3 |
|
q1pval.b |
|
4 |
|
q1pval.d |
|
5 |
|
q1pval.m |
|
6 |
|
q1pval.t |
|
7 |
2 3
|
elbasfv |
|
8 |
|
fveq2 |
|
9 |
8 2
|
eqtr4di |
|
10 |
9
|
csbeq1d |
|
11 |
2
|
fvexi |
|
12 |
11
|
a1i |
|
13 |
|
fveq2 |
|
14 |
13
|
adantl |
|
15 |
14 3
|
eqtr4di |
|
16 |
15
|
csbeq1d |
|
17 |
3
|
fvexi |
|
18 |
17
|
a1i |
|
19 |
|
simpr |
|
20 |
|
fveq2 |
|
21 |
20
|
ad2antrr |
|
22 |
21 4
|
eqtr4di |
|
23 |
|
fveq2 |
|
24 |
23
|
ad2antlr |
|
25 |
24 5
|
eqtr4di |
|
26 |
|
eqidd |
|
27 |
|
fveq2 |
|
28 |
27
|
ad2antlr |
|
29 |
28 6
|
eqtr4di |
|
30 |
29
|
oveqd |
|
31 |
25 26 30
|
oveq123d |
|
32 |
22 31
|
fveq12d |
|
33 |
22
|
fveq1d |
|
34 |
32 33
|
breq12d |
|
35 |
19 34
|
riotaeqbidv |
|
36 |
19 19 35
|
mpoeq123dv |
|
37 |
18 36
|
csbied |
|
38 |
16 37
|
eqtrd |
|
39 |
12 38
|
csbied |
|
40 |
10 39
|
eqtrd |
|
41 |
|
df-q1p |
|
42 |
17 17
|
mpoex |
|
43 |
40 41 42
|
fvmpt |
|
44 |
1 43
|
eqtrid |
|
45 |
7 44
|
syl |
|
46 |
45
|
adantl |
|
47 |
|
id |
|
48 |
|
oveq2 |
|
49 |
47 48
|
oveqan12d |
|
50 |
49
|
fveq2d |
|
51 |
|
fveq2 |
|
52 |
51
|
adantl |
|
53 |
50 52
|
breq12d |
|
54 |
53
|
riotabidv |
|
55 |
54
|
adantl |
|
56 |
|
simpl |
|
57 |
|
simpr |
|
58 |
|
riotaex |
|
59 |
58
|
a1i |
|
60 |
46 55 56 57 59
|
ovmpod |
|