Metamath Proof Explorer


Theorem qqhf

Description: QQHom as a function. (Contributed by Thierry Arnoux, 28-Oct-2017)

Ref Expression
Hypotheses qqhval2.0 B = Base R
qqhval2.1 × ˙ = / r R
qqhval2.2 L = ℤRHom R
Assertion qqhf R DivRing chr R = 0 ℚHom R : B

Proof

Step Hyp Ref Expression
1 qqhval2.0 B = Base R
2 qqhval2.1 × ˙ = / r R
3 qqhval2.2 L = ℤRHom R
4 1 2 3 qqhval2 R DivRing chr R = 0 ℚHom R = q L numer q × ˙ L denom q
5 drngring R DivRing R Ring
6 5 adantr R DivRing chr R = 0 R Ring
7 6 adantr R DivRing chr R = 0 q R Ring
8 3 zrhrhm R Ring L ring RingHom R
9 zringbas = Base ring
10 9 1 rhmf L ring RingHom R L : B
11 7 8 10 3syl R DivRing chr R = 0 q L : B
12 qnumcl q numer q
13 12 adantl R DivRing chr R = 0 q numer q
14 11 13 ffvelrnd R DivRing chr R = 0 q L numer q B
15 simpll R DivRing chr R = 0 q R DivRing
16 qdencl q denom q
17 16 adantl R DivRing chr R = 0 q denom q
18 17 nnzd R DivRing chr R = 0 q denom q
19 11 18 ffvelrnd R DivRing chr R = 0 q L denom q B
20 17 nnne0d R DivRing chr R = 0 q denom q 0
21 20 neneqd R DivRing chr R = 0 q ¬ denom q = 0
22 fvex denom q V
23 22 elsn denom q 0 denom q = 0
24 21 23 sylnibr R DivRing chr R = 0 q ¬ denom q 0
25 eqid 0 R = 0 R
26 1 3 25 zrhker R Ring chr R = 0 L -1 0 R = 0
27 26 biimpa R Ring chr R = 0 L -1 0 R = 0
28 5 27 sylan R DivRing chr R = 0 L -1 0 R = 0
29 28 adantr R DivRing chr R = 0 q L -1 0 R = 0
30 24 29 neleqtrrd R DivRing chr R = 0 q ¬ denom q L -1 0 R
31 ffn L : B L Fn
32 8 10 31 3syl R Ring L Fn
33 elpreima L Fn denom q L -1 0 R denom q L denom q 0 R
34 5 32 33 3syl R DivRing denom q L -1 0 R denom q L denom q 0 R
35 34 biimpar R DivRing denom q L denom q 0 R denom q L -1 0 R
36 35 expr R DivRing denom q L denom q 0 R denom q L -1 0 R
37 36 con3dimp R DivRing denom q ¬ denom q L -1 0 R ¬ L denom q 0 R
38 15 18 30 37 syl21anc R DivRing chr R = 0 q ¬ L denom q 0 R
39 fvex L denom q V
40 39 elsn L denom q 0 R L denom q = 0 R
41 38 40 sylnib R DivRing chr R = 0 q ¬ L denom q = 0 R
42 41 neqned R DivRing chr R = 0 q L denom q 0 R
43 eqid Unit R = Unit R
44 1 43 25 drngunit R DivRing L denom q Unit R L denom q B L denom q 0 R
45 44 biimpar R DivRing L denom q B L denom q 0 R L denom q Unit R
46 15 19 42 45 syl12anc R DivRing chr R = 0 q L denom q Unit R
47 1 43 2 dvrcl R Ring L numer q B L denom q Unit R L numer q × ˙ L denom q B
48 7 14 46 47 syl3anc R DivRing chr R = 0 q L numer q × ˙ L denom q B
49 4 48 fmpt3d R DivRing chr R = 0 ℚHom R : B