Metamath Proof Explorer


Theorem qreccl

Description: Closure of reciprocal of rationals. (Contributed by NM, 3-Aug-2004)

Ref Expression
Assertion qreccl AA01A

Proof

Step Hyp Ref Expression
1 elq AxyA=xy
2 nnne0 yy0
3 2 ancli yyy0
4 neeq1 A=xyA0xy0
5 zcn xx
6 nncn yy
7 5 6 anim12i xyxy
8 divne0b xyy0x0xy0
9 8 3expa xyy0x0xy0
10 7 9 sylan xyy0x0xy0
11 10 bicomd xyy0xy0x0
12 4 11 sylan9bbr xyy0A=xyA0x0
13 nnz yy
14 zmulcl xyxy
15 13 14 sylan2 xyxy
16 15 adantr xyx0xy
17 msqznn xx0xx
18 17 adantlr xyx0xx
19 16 18 jca xyx0xyxx
20 19 adantlr xyy0x0xyxx
21 20 adantlr xyy0A=xyx0xyxx
22 oveq2 A=xy1A=1xy
23 divid xx0xx=1
24 23 adantr xx0yy0xx=1
25 24 oveq1d xx0yy0xxxy=1xy
26 simpll xx0yy0x
27 simpl xx0yy0xx0
28 simpr xx0yy0yy0
29 divdivdiv xxx0xx0yy0xxxy=xyxx
30 26 27 27 28 29 syl22anc xx0yy0xxxy=xyxx
31 25 30 eqtr3d xx0yy01xy=xyxx
32 31 an4s xyx0y01xy=xyxx
33 7 32 sylan xyx0y01xy=xyxx
34 33 anass1rs xyy0x01xy=xyxx
35 22 34 sylan9eqr xyy0x0A=xy1A=xyxx
36 35 an32s xyy0A=xyx01A=xyxx
37 21 36 jca xyy0A=xyx0xyxx1A=xyxx
38 37 ex xyy0A=xyx0xyxx1A=xyxx
39 12 38 sylbid xyy0A=xyA0xyxx1A=xyxx
40 39 ex xyy0A=xyA0xyxx1A=xyxx
41 40 anasss xyy0A=xyA0xyxx1A=xyxx
42 3 41 sylan2 xyA=xyA0xyxx1A=xyxx
43 rspceov xyxx1A=xyxxzw1A=zw
44 43 3expa xyxx1A=xyxxzw1A=zw
45 elq 1Azw1A=zw
46 44 45 sylibr xyxx1A=xyxx1A
47 42 46 syl8 xyA=xyA01A
48 47 rexlimivv xyA=xyA01A
49 1 48 sylbi AA01A
50 49 imp AA01A