Metamath Proof Explorer


Theorem quad3

Description: Variant of quadratic equation with discriminant expanded. (Contributed by Filip Cernatescu, 19-Oct-2019)

Ref Expression
Hypotheses quad3.1 X
quad3.2 A
quad3.3 A 0
quad3.4 B
quad3.5 C
quad3.6 A X 2 + B X + C = 0
Assertion quad3 X = - B + B 2 4 A C 2 A X = - B - B 2 4 A C 2 A

Proof

Step Hyp Ref Expression
1 quad3.1 X
2 quad3.2 A
3 quad3.3 A 0
4 quad3.4 B
5 quad3.5 C
6 quad3.6 A X 2 + B X + C = 0
7 2cn 2
8 7 2 mulcli 2 A
9 2ne0 2 0
10 7 2 9 3 mulne0i 2 A 0
11 4 8 10 divcli B 2 A
12 1 11 addcli X + B 2 A
13 8 12 sqmuli 2 A X + B 2 A 2 = 2 A 2 X + B 2 A 2
14 1 11 binom2i X + B 2 A 2 = X 2 + 2 X B 2 A + B 2 A 2
15 1 sqcli X 2
16 2 15 mulcli A X 2
17 4 1 mulcli B X
18 16 17 2 3 divdiri A X 2 + B X A = A X 2 A + B X A
19 15 2 3 divcan3i A X 2 A = X 2
20 4 1 2 3 div23i B X A = B A X
21 19 20 oveq12i A X 2 A + B X A = X 2 + B A X
22 18 21 eqtr2i X 2 + B A X = A X 2 + B X A
23 4 2 3 divcli B A
24 23 1 mulcomi B A X = X B A
25 1 23 mulcli X B A
26 25 7 9 divcan2i 2 X B A 2 = X B A
27 1 23 7 9 divassi X B A 2 = X B A 2
28 2 3 pm3.2i A A 0
29 7 9 pm3.2i 2 2 0
30 divdiv1 B A A 0 2 2 0 B A 2 = B A 2
31 4 28 29 30 mp3an B A 2 = B A 2
32 2 7 mulcomi A 2 = 2 A
33 32 oveq2i B A 2 = B 2 A
34 31 33 eqtri B A 2 = B 2 A
35 34 oveq2i X B A 2 = X B 2 A
36 27 35 eqtri X B A 2 = X B 2 A
37 36 oveq2i 2 X B A 2 = 2 X B 2 A
38 24 26 37 3eqtr2i B A X = 2 X B 2 A
39 38 oveq2i X 2 + B A X = X 2 + 2 X B 2 A
40 16 17 5 addassi A X 2 + B X + C = A X 2 + B X + C
41 40 eqcomi A X 2 + B X + C = A X 2 + B X + C
42 41 oveq1i A X 2 + B X + C - C = A X 2 + B X + C - C
43 16 17 addcli A X 2 + B X
44 43 5 pncan3oi A X 2 + B X + C - C = A X 2 + B X
45 42 44 eqtr2i A X 2 + B X = A X 2 + B X + C - C
46 6 oveq1i A X 2 + B X + C - C = 0 C
47 df-neg C = 0 C
48 46 47 eqtr4i A X 2 + B X + C - C = C
49 45 48 eqtri A X 2 + B X = C
50 49 oveq1i A X 2 + B X A = C A
51 22 39 50 3eqtr3i X 2 + 2 X B 2 A = C A
52 51 oveq1i X 2 + 2 X B 2 A + B 2 A 2 = C A + B 2 A 2
53 14 52 eqtri X + B 2 A 2 = C A + B 2 A 2
54 5 negcli C
55 54 2 3 divcli C A
56 11 sqcli B 2 A 2
57 55 56 addcomi C A + B 2 A 2 = B 2 A 2 + C A
58 4 8 10 sqdivi B 2 A 2 = B 2 2 A 2
59 4cn 4
60 59 2 mulcli 4 A
61 4ne0 4 0
62 59 2 61 3 mulne0i 4 A 0
63 60 60 54 2 62 3 divmuldivi 4 A 4 A C A = 4 A C 4 A A
64 60 62 dividi 4 A 4 A = 1
65 64 eqcomi 1 = 4 A 4 A
66 65 oveq1i 1 C A = 4 A 4 A C A
67 55 mulid2i 1 C A = C A
68 66 67 eqtr3i 4 A 4 A C A = C A
69 5 mulm1i -1 C = C
70 69 eqcomi C = -1 C
71 70 oveq2i 4 A C = 4 A -1 C
72 neg1cn 1
73 60 72 5 mulassi 4 A -1 C = 4 A -1 C
74 71 73 eqtr4i 4 A C = 4 A -1 C
75 60 72 mulcomi 4 A -1 = -1 4 A
76 75 oveq1i 4 A -1 C = -1 4 A C
77 72 60 5 mulassi -1 4 A C = -1 4 A C
78 74 76 77 3eqtri 4 A C = -1 4 A C
79 59 2 5 mulassi 4 A C = 4 A C
80 79 oveq2i -1 4 A C = -1 4 A C
81 2 5 mulcli A C
82 59 81 mulcli 4 A C
83 82 mulm1i -1 4 A C = 4 A C
84 78 80 83 3eqtri 4 A C = 4 A C
85 2t2e4 2 2 = 4
86 85 eqcomi 4 = 2 2
87 86 oveq1i 4 A = 2 2 A
88 87 oveq1i 4 A A = 2 2 A A
89 7 7 2 mulassi 2 2 A = 2 2 A
90 89 oveq1i 2 2 A A = 2 2 A A
91 88 90 eqtri 4 A A = 2 2 A A
92 7 8 mulcomi 2 2 A = 2 A 2
93 92 oveq1i 2 2 A A = 2 A 2 A
94 8 7 2 mulassi 2 A 2 A = 2 A 2 A
95 91 93 94 3eqtri 4 A A = 2 A 2 A
96 8 sqvali 2 A 2 = 2 A 2 A
97 95 96 eqtr4i 4 A A = 2 A 2
98 84 97 oveq12i 4 A C 4 A A = 4 A C 2 A 2
99 63 68 98 3eqtr3i C A = 4 A C 2 A 2
100 58 99 oveq12i B 2 A 2 + C A = B 2 2 A 2 + 4 A C 2 A 2
101 4 sqcli B 2
102 82 negcli 4 A C
103 8 sqcli 2 A 2
104 8 8 10 10 mulne0i 2 A 2 A 0
105 96 104 eqnetri 2 A 2 0
106 101 102 103 105 divdiri B 2 + 4 A C 2 A 2 = B 2 2 A 2 + 4 A C 2 A 2
107 101 82 negsubi B 2 + 4 A C = B 2 4 A C
108 107 oveq1i B 2 + 4 A C 2 A 2 = B 2 4 A C 2 A 2
109 100 106 108 3eqtr2i B 2 A 2 + C A = B 2 4 A C 2 A 2
110 53 57 109 3eqtri X + B 2 A 2 = B 2 4 A C 2 A 2
111 110 oveq2i 2 A 2 X + B 2 A 2 = 2 A 2 B 2 4 A C 2 A 2
112 101 82 subcli B 2 4 A C
113 112 103 105 divcan2i 2 A 2 B 2 4 A C 2 A 2 = B 2 4 A C
114 13 111 113 3eqtri 2 A X + B 2 A 2 = B 2 4 A C
115 8 12 mulcli 2 A X + B 2 A
116 115 112 pm3.2i 2 A X + B 2 A B 2 4 A C
117 eqsqrtor 2 A X + B 2 A B 2 4 A C 2 A X + B 2 A 2 = B 2 4 A C 2 A X + B 2 A = B 2 4 A C 2 A X + B 2 A = B 2 4 A C
118 116 117 ax-mp 2 A X + B 2 A 2 = B 2 4 A C 2 A X + B 2 A = B 2 4 A C 2 A X + B 2 A = B 2 4 A C
119 114 118 mpbi 2 A X + B 2 A = B 2 4 A C 2 A X + B 2 A = B 2 4 A C
120 sqrtcl B 2 4 A C B 2 4 A C
121 112 120 ax-mp B 2 4 A C
122 121 8 12 10 divmuli B 2 4 A C 2 A = X + B 2 A 2 A X + B 2 A = B 2 4 A C
123 eqcom B 2 4 A C 2 A = X + B 2 A X + B 2 A = B 2 4 A C 2 A
124 122 123 bitr3i 2 A X + B 2 A = B 2 4 A C X + B 2 A = B 2 4 A C 2 A
125 121 8 10 divcli B 2 4 A C 2 A
126 125 11 1 subadd2i B 2 4 A C 2 A B 2 A = X X + B 2 A = B 2 4 A C 2 A
127 eqcom B 2 4 A C 2 A B 2 A = X X = B 2 4 A C 2 A B 2 A
128 126 127 bitr3i X + B 2 A = B 2 4 A C 2 A X = B 2 4 A C 2 A B 2 A
129 divneg B 2 A 2 A 0 B 2 A = B 2 A
130 4 8 10 129 mp3an B 2 A = B 2 A
131 130 oveq2i B 2 4 A C 2 A + B 2 A = B 2 4 A C 2 A + B 2 A
132 125 11 negsubi B 2 4 A C 2 A + B 2 A = B 2 4 A C 2 A B 2 A
133 4 negcli B
134 133 8 10 divcli B 2 A
135 125 134 addcomi B 2 4 A C 2 A + B 2 A = B 2 A + B 2 4 A C 2 A
136 131 132 135 3eqtr3i B 2 4 A C 2 A B 2 A = B 2 A + B 2 4 A C 2 A
137 133 121 8 10 divdiri - B + B 2 4 A C 2 A = B 2 A + B 2 4 A C 2 A
138 136 137 eqtr4i B 2 4 A C 2 A B 2 A = - B + B 2 4 A C 2 A
139 138 eqeq2i X = B 2 4 A C 2 A B 2 A X = - B + B 2 4 A C 2 A
140 124 128 139 3bitri 2 A X + B 2 A = B 2 4 A C X = - B + B 2 4 A C 2 A
141 121 negcli B 2 4 A C
142 141 8 12 10 divmuli B 2 4 A C 2 A = X + B 2 A 2 A X + B 2 A = B 2 4 A C
143 eqcom B 2 4 A C 2 A = X + B 2 A X + B 2 A = B 2 4 A C 2 A
144 142 143 bitr3i 2 A X + B 2 A = B 2 4 A C X + B 2 A = B 2 4 A C 2 A
145 141 8 10 divcli B 2 4 A C 2 A
146 145 11 1 subadd2i B 2 4 A C 2 A B 2 A = X X + B 2 A = B 2 4 A C 2 A
147 eqcom B 2 4 A C 2 A B 2 A = X X = B 2 4 A C 2 A B 2 A
148 146 147 bitr3i X + B 2 A = B 2 4 A C 2 A X = B 2 4 A C 2 A B 2 A
149 130 oveq2i B 2 4 A C 2 A + B 2 A = B 2 4 A C 2 A + B 2 A
150 145 11 negsubi B 2 4 A C 2 A + B 2 A = B 2 4 A C 2 A B 2 A
151 145 134 addcomi B 2 4 A C 2 A + B 2 A = B 2 A + B 2 4 A C 2 A
152 149 150 151 3eqtr3i B 2 4 A C 2 A B 2 A = B 2 A + B 2 4 A C 2 A
153 133 141 8 10 divdiri - B + B 2 4 A C 2 A = B 2 A + B 2 4 A C 2 A
154 133 121 negsubi - B + B 2 4 A C = - B - B 2 4 A C
155 154 oveq1i - B + B 2 4 A C 2 A = - B - B 2 4 A C 2 A
156 152 153 155 3eqtr2i B 2 4 A C 2 A B 2 A = - B - B 2 4 A C 2 A
157 156 eqeq2i X = B 2 4 A C 2 A B 2 A X = - B - B 2 4 A C 2 A
158 144 148 157 3bitri 2 A X + B 2 A = B 2 4 A C X = - B - B 2 4 A C 2 A
159 140 158 orbi12i 2 A X + B 2 A = B 2 4 A C 2 A X + B 2 A = B 2 4 A C X = - B + B 2 4 A C 2 A X = - B - B 2 4 A C 2 A
160 119 159 mpbi X = - B + B 2 4 A C 2 A X = - B - B 2 4 A C 2 A